A long, slender column ABC is pin-supported at the ends and compressed by an axial load P (Fig. 11-15). Lateral support is provided at the midpoint B in the plane of the figure.
However, lateral support perpendicular to the plane of the figure is provided only at the ends.
The column is constructed of a standard steel shape (IPN 220) having modulus of elasticity E = 200 GPa and proportional limit \sigma_{pl} = 300 MPa. The total length of the column is L = 8 m.
Determine the allowable load P_{allow} using a factor of safety n = 2.5 with respect to Euler buckling of the column.
Use a four-step problem-solving approach.
1. Conceptualize: Because of the manner in which it is supported, this column may buckle in either of the two principal planes of bending. As one possibility, it may buckle in the plane of the figure, in which case the distance between lateral supports is L/2 = 4 m and bending occurs about axis 2-2 (see Fig. 11-9c for the mode shape of buckling).
As a second possibility, the column may buckle perpendicular to the plane of the figure with bending about axis 1–1. Because the only lateral support in this direction is at the ends, the distance between lateral supports is L = 8 m (see Fig. 11-9b for the mode shape of buckling).
Column properties: From Table F-2 obtain the following moments of inertia and cross-sectional area for an IPN 220 column:
\quad\quad\quad\quad I_{1}=3060~{\mathrm{cm}}^{4}\ \ \ \ \ I_{2}=162~{\mathrm{cm}}^{4}\ \ \ \ \ A=39.5~{\mathrm{cm}}^{2}
2. Categorize:
Critical loads: If the column buckles in the plane of the figure, the critical load is
\quad\quad\quad\quad P_{cr}\,=\,{\frac{\pi^{2}\,E\,I_{2}}{(L\,/2)^{2}}}\,=\,{\frac{4\pi^{2}\,E\,I_{2}}{L^{2}}}
3. Analyze: Substitute numerical values to obtain
\quad\quad\quad\quad P_{cr}\,=\,\frac{4\pi^{2}E I_{2}}{L^{2}}\,=\,\frac{4\pi^{2}(200\,\mathrm{GP}{\mathrm{a}})(162 \mathrm{cm}^{4})}{(8\,\mathrm{m})^{2}}=200\,\mathrm{kN}
If the column buckles perpendicular to the plane of the figure, the critical load is
\quad\quad\quad\quad P_{cr}\,=\,{\frac{\pi^{2}E I_{1}}{L^{2}}}\,=\,{\frac{\pi^{2}(200\,\mathrm{GP}{\mathrm{a}})(3060\,\mathrm{cm}^{4})}{(8\,\mathrm{m})^{2}}}\,=\,943.8\,\mathrm{kN}
Therefore, the critical load for the column (the smaller of the two preceding values) is
\quad\quad\quad\quad P_{cr}\,= 200 ~kN
and buckling occurs in the plane of the figure.
Critical stresses: Since the calculations for the critical loads are valid only if the material follows Hooke’s law, verify that the critical stresses do not exceed the proportional limit of the material. For the larger critical load, the critical stress is
\quad\quad\quad\quad \sigma_{\mathrm{cr}}={\frac{P_{\mathrm{cr}}}{A}}\,=\,{\frac{943.8\,\mathrm{~kN}}{39.5\,\mathrm{cm}^{2}}}=238\,.9\,\mathrm{MPa}
Since this stress is less than the proportional limit (\sigma_{pl} = 300 MPa), both critical-load calculations are satisfactory.
4. Finalize:
Allowable load: The allowable axial load for the column, based on Euler buckling, is
\quad\quad\quad\quad P_{\mathrm{allow}}={\frac{P_{\mathrm{cr}}}{n}}\,=\,{\frac{200\,\mathrm{kN}}{2.5}}\,=\,79.9\,\mathrm{kN}
in which n = 2.5 is the desired factor of safety.
Table F-2 | ||||||||||||
Properties of European Standard Beams | ||||||||||||
Designation | Mass per meter | Area of section | Depth of section | Width of section | ||||||||
Thickness | Strong axis 1-1 | Weak axis 2-2 | ||||||||||
G | A | h | b | t_w | t_f | I_1 | S_1 | r_1 | I_2 | S_2 | r_2 | |
kg/m | cm² | mm | mm | mm | mm | cm⁴ | cm³ | cm | cm⁴ | cm³ | cm | |
IPN 550 | 166 | 212 | 550 | 200 | 19 | 30 | 99180 | 3610 | 21.6 | 3490 | 349 | 4.02 |
IPN 500 | 141 | 179 | 500 | 185 | 18 | 27 | 68740 | 2750 | 19.6 | 2480 | 268 | 3.72 |
IPN 450 | 115 | 147 | 450 | 170 | 16.2 | 24.3 | 45850 | 2040 | 17.7 | 1730 | 203 | 3.43 |
IPN 400 | 92.4 | 118 | 400 | 155 | 14.4 | 21.6 | 29210 | 1460 | 15.7 | 1160 | 149 | 3.13 |
IPN 380 | 84 | 107 | 380 | 149 | 13.7 | 20.5 | 24010 | 1260 | 15 | 975 | 131 | 3.02 |
IPN 360 | 76.1 | 97 | 360 | 143 | 13 | 19.5 | 19610 | 1090 | 14.2 | 818 | 114 | 2.9 |
IPN 340 | 68 | 86.7 | 340 | 137 | 12.2 | 18.3 | 15700 | 923 | 13.5 | 674 | 98.4 | 2.8 |
IPN 320 | 61 | 77.7 | 320 | 131 | 11.5 | 17.3 | 12510 | 782 | 12.7 | 555 | 84.7 | 2.67 |
IPN 300 | 54.2 | 69 | 300 | 125 | 10.8 | 16.2 | 9800 | 653 | 11.9 | 451 | 72.2 | 2.56 |
IPN 280 | 47.9 | 61 | 280 | 119 | 10.1 | 15.2 | 7590 | 542 | 11.1 | 364 | 61.2 | 2.45 |
IPN 260 | 41.9 | 53.3 | 260 | 113 | 9.4 | 14.1 | 5740 | 442 | 10.4 | 288 | 51 | 2.32 |
IPN 240 | 36.2 | 46.1 | 240 | 106 | 8.7 | 13.1 | 4250 | 354 | 9.59 | 221 | 41.7 | 2.2 |
IPN 220 | 31.1 | 39.5 | 220 | 98 | 8.1 | 12.2 | 3060 | 278 | 8.8 | 162 | 33.1 | 2.02 |
IPN 200 | 26.2 | 33.4 | 200 | 90 | 7.5 | 11.3 | 2140 | 214 | 8 | 117 | 26 | 1.87 |
IPN 180 | 21.9 | 27.9 | 180 | 82 | 6.9 | 10.4 | 1450 | 161 | 7.2 | 81.3 | 19.8 | 1.71 |
IPN 160 | 17.9 | 22.8 | 160 | 74 | 6.3 | 9.5 | 935 | 117 | 6.4 | 54.7 | 14.8 | 1.55 |
IPN 140 | 14.3 | 18.3 | 140 | 66 | 5.7 | 8.6 | 573 | 81.9 | 5.61 | 35.2 | 10.7 | 1.4 |
IPN 120 | 11.1 | 14.2 | 120 | 58 | 5.1 | 7.7 | 328 | 54.7 | 4.81 | 21.5 | 7.41 | 1.23 |
IPN 100 | 8.34 | 10.6 | 100 | 50 | 4.5 | 6.8 | 171 | 34.2 | 4.01 | 12.2 | 4.88 | 1.07 |
IPN 80 | 5.94 | 7.58 | 80 | 42 | 3.9 | 5.9 | 77.8 | 19.5 | 3.2 | 6.29 | 3 | 0.91 |