A ramp, a pulley, and two boxes. A box of mass m_{\mathrm{A}} = 10.0 kg rests on a surface inclined at θ = 37° to the horizontal. It is connected by a lightweight cord, which passes over a massless and frictionless pulley, to a second box of mass m_{\mathrm{B}}, which hangs freely as shown in Fig. 5-9a. (a) If the coefficient of static friction is \mu_s = 0.40, determine what range of values for mass m_{\mathrm{B}} will keep the system at rest. (b) If the coefficient of kinetic friction is \mu_k = 0.30, and m_{\mathrm{B}} = 10.0 kg, determine the acceleration of the system.
APPROACH Figure 5-9b shows two free-body diagrams for box m_{\mathrm{A}} because the force of friction can be either up or down the slope, depending on which direction the box slides: (i) if m_{\mathrm{B}} = 0 or is sufficiently small, m_{\mathrm{A}} would tend to slide down the incline, so \overrightarrow{\mathbf{F}}_{\mathrm{fr}} would be directed up the incline; (ii) if m_{\mathrm{B}} is large enough, m_{\mathrm{A}} will tend to be pulled up the plane, so \overrightarrow{\mathbf{F}}_{\mathrm{fr}} would point down the plane. The tension force exerted by the cord is labeled \overrightarrow{\mathbf{F}}_{\mathrm{T}}.
(a) For both cases (i) and (ii), Newton’s second law for the y direction (perpendicular to the plane) is the same:
F_{\mathrm{N}}-m_{\mathrm{A}} g \cos \theta=m_{\mathrm{A}} a_y=0
since there is no y motion. So
F_{\mathrm{N}}=m_{\mathrm{A}} g \cos \theta.
Now for the x motion. We consider case (i) first for which \Sigma F= ma gives
m_{\mathrm{A}} g \sin \theta-F_{\mathrm{T}}-F_{\mathrm{fr}}=m_{\mathrm{A}} a_x
We want a_x = 0 and we solve for F_{\mathrm{T}} since F_{\mathrm{T}} is related to m_{\mathrm{B}} (whose value we are seeking) by F_{\mathrm{T}} = m_{\mathrm{B}} g (see Fig. 5-9c).Thus
m_{\mathrm{A}} g \sin \theta-F_{\mathrm{fr}}=F_{\mathrm{T}}=m_{\mathrm{B}} g.
We solve this for m_{\mathrm{B}} and set F_{\mathrm{fr}} at its maximum value \mu_{\mathrm{s}} F_{\mathrm{N}}=\mu_{\mathrm{s}} m_{\mathrm{A}} g \cos \theta to find the minimum value that m_{\mathrm{B}} can have to prevent motion (a_x = 0):
\begin{aligned}m_{\mathrm{B}} & =m_{\mathrm{A}} \sin \theta-\mu_{\mathrm{s}} m_{\mathrm{A}} \cos \theta \\& =(10.0 \mathrm{~kg})\left(\sin 37^{\circ}-0.40 \cos 37^{\circ}\right)=2.8 \mathrm{~kg} .\end{aligned}
Thus if m_{\mathrm{B}} < 2.8 kg, then box A will slide down the incline.
Now for case (ii) in Fig. 5-9b, box A being pulled up the incline. Newton’s second law is
m_{\mathrm{A}} g \sin \theta+F_{\mathrm{fr}}-F_{\mathrm{T}}=m_{\mathrm{A}} a_x=0.
Then the maximum value m_{\mathrm{B}} can have without causing acceleration is given by
F_{\mathrm{T}}=m_{\mathrm{B}} g=m_{\mathrm{A}} g \sin \theta+\mu_{\mathrm{S}} m_{\mathrm{A}} g \cos \theta
or
\begin{aligned}m_{\mathrm{B}} & =m_{\mathrm{A}} \sin \theta+\mu_{\mathrm{s}} m_{\mathrm{A}} \cos \theta \\& =(10.0 \mathrm{~kg})\left(\sin 37^{\circ}+0.40 \cos 37^{\circ}\right)=9.2 \mathrm{~kg} .\end{aligned}
Thus, to prevent motion, we have the condition
2.8 \mathrm{~kg}<m_{\mathrm{B}}<9.2 \mathrm{~kg}.
(b) If m_{\mathrm{B}} = 10.0 kg and \mu_k = 0.30, then m_{\mathrm{B}} will fall and m_{\mathrm{A}} will rise up the plane (case ii). To find their acceleration a, we use \Sigma F = ma for box A:
m_{\mathrm{A}} a=F_{\mathrm{T}}-m_{\mathrm{A}} g \sin \theta-\mu_{\mathrm{k}} F_{\mathrm{N}}.
Since m_{\mathrm{B}} accelerates downward, Newton’s second law for box B (Fig. 5-9c) tells us m_{\mathrm{B}} a=m_{\mathrm{B}} g – F_{\mathrm{T}}, \text { or } F_{\mathrm{T}}=m_{\mathrm{B}} g-m_{\mathrm{B}} a, and we substitute this into the equation above:
m_{\mathrm{A}} a=m_{\mathrm{B}} g-m_{\mathrm{B}} a-m_{\mathrm{A}} g \sin \theta-\mu_{\mathrm{k}} F_{\mathrm{N}} .
We solve for the acceleration a and substitute F_{\mathrm{N}}=m_{\mathrm{A}} g \cos \theta , and then m_{\mathrm{A}}=m_{\mathrm{B}} = 10.0 kg, to find
\begin{aligned}a & =\frac{m_{\mathrm{B}} g-m_{\mathrm{A}} g \sin \theta-\mu_{\mathrm{k}} m_{\mathrm{A}} g \cos \theta}{m_{\mathrm{A}}+m_{\mathrm{B}}} \\& =\frac{(10.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^2\right)\left(1-\sin 37^{\circ}-0.30 \cos 37^{\circ}\right)}{20.0 \mathrm{~kg}} \\& =0.079 g=0.78 \mathrm{~m} / \mathrm{s}^2 .\end{aligned}
NOTE It is worth comparing this equation for acceleration a with that obtained in Example 5-5: if here we let θ = 0, the plane is horizontal as in Example 5-5, and we obtain a=\left(m_{\mathrm{B}} g-\mu_{\mathrm{k}} m_{\mathrm{A}} g\right) /\left(m_{\mathrm{A}}+m_{\mathrm{B}}\right) just as in Example 5-5 .