Holooly Plus Logo

Question 3.14: A steel angle and a steel wide-flange beam, each of length L......

A steel angle and a steel wide-flange beam, each of length L = 3.5  m, are subjected to torque T (see Fig. 3-50). The allowable shear stress is 45   MPa, and the maximum permissible twist rotation is 5°. Find the value of the maximum torque T than can be applied to each section. Assume that G = 80   GPa and ignore stress concentration effects. Use the cross-sectional properties and dimensions given below. [See Table F-1 for wide flange beams and Table F-5 for angles with similar cross-sectional properties and dimensions.]
Angle and beam cross sectional properties and dimensions:
Angle: A = 49.6 \,cm^2 , total leg length = b_L = 280\, mm, leg thickness = t_L = 19\, mm
Beam: A = 49.6\, cm^2, depth of web = d_w = 353\, mm, web thickness = t_w = 6.48\, mm, flange width = b_f = 128 \,mm, flange thickness = t_f = 10.7\, mm

Table F-1
Properties of European Wide-Flange Beams
Designation Mass per meter Area of section Depth of section Width of section Thickness Strong axis 1-1 Weak axis 2-2
G A h b t_w t_f I_1 S_1 r_1 I_2 S_2 r_2
kg/m cm² mm mm mm mm cm⁴ cm³ cm cm⁴ cm³ cm
HE 1000 B 314 400 1000 300 19 36 644700 12890 40.15 16280 1085 6.38
HE 900 B 291 371.3 900 300 18.5 35 494100 10980 36.48 15820 1054 6.53
HE 700 B 241 306.4 700 300 17 32 256900 7340 28.96 14440 962.7 6.87
HE 650 B 225 286.3 650 300 16 31 210600 6480 27.12 13980 932.3 6.99
HE 600 B 212 270 600 300 15.5 30 171000 5701 25.17 13530 902 7.08
HE 550 B 199 254.1 550 300 15 29 136700 4971 23.2 13080 871.8 7.17
HE 600 A 178 226.5 590 300 13 25 141200 4787 24.97 11270 751.4 7.05
HE 450 B 171 218 450 300 14 26 79890 3551 19.14 11720 781.4 7.33
HE 550 A 166 211.8 540 300 12.5 24 111900 4146 22.99 10820 721.3 7.15
HE 360 B 142 180.6 360 300 12.5 22.5 43190 2400 15.46 10140 676.1 7.49
HE 450 A 140 178 440 300 11.5 21 63720 2896 18.92 9465 631 7.29
HE 340 B 134 170.9 340 300 12 21.5 36660 2156 14.65 9690 646 7.53
HE 320 B 127 161.3 320 300 11.5 20.5 30820 1926 13.82 9239 615.9 7.57
HE 360 A 112 142.8 350 300 10 17.5 33090 1891 15.22 7887 525.8 7.43
HE 340 A 105 133.5 330 300 9.5 16.5 27690 1678 14.4 7436 495.7 7.46
HE 320 A 97.6 124.4 310 300 9 15.5 22930 1479 13.58 6985 465.7 7.49
HE 260 B 93 118.4 260 260 10 17.5 14920 1148 11.22 5135 395 6.58
HE 240 B 83.2 106 240 240 10 17 11260 938.3 10.31 3923 326.9 6.08
HE 280 A 76.4 97.26 270 280 8 13 13670 1013 11.86 4763 340.2 7
HE 220 B 71.5 91.04 220 220 9.5 16 8091 735.5 9.43 2843 258.5 5.59
HE 260 A 68.2 86.82 250 260 7.5 12.5 10450 836.4 10.97 3668 282.1 6.5
HE 240 A 60.3 76.84 230 240 7.5 12 7763 675.1 10.05 2769 230.7 6
HE 180 B 51.2 65.25 180 180 8.5 14 3831 425.7 7.66 1363 151.4 4.57
HE 160 B 42.6 54.25 160 160 8 13 2492 311.5 6.78 889.2 111.2 4.05
HE 140 B 33.7 42.96 140 140 7 12 1509 215.6 5.93 549.7 78.52 3.58
HE 120 B 26.7 34.01 120 120 6.5 11 864.4 144.1 5.04 317.5 52.92 3.06
HE 140 A 24.7 31.42 133 140 5.5 8.5 1033 155.4 5.73 389.3 55.62 3.52
HE 100 B 20.4 26.04 100 100 6 10 449.5 89.91 4.16 167.3 33.45 2.53
HE 100 A 16.7 21.24 96 100 5 8 349.2 72.76 4.06 133.8 26.76 2.51
Table F-5
Properties of Angle Sections with Unequal Legs (L Shapes)—USCS Units (Abridged List)
Mass per meter Area of section Axis 1-1 Axis 2-2 Axis 3-3     Angle  α
Thickness
Designation G A I S r d I S r c I_{min} r_{min}\quad  tan  α
mm kg/m cm² cm⁴ cm³ cm cm cm⁴ cm³ cm cm cm⁴ cm
L 200 × 100 × 14 14 31.6 40.28 1654 128.4 6.41 7.12 282.2 36.08 2.65 2.18 181.7 2.12 0.261
L 150 × 100 × 14 14 26.1 33.22 743.5 74.12 4.73 4.97 264.2 35.21 2.82 2.5 153 2.15 0.434
L 200 × 100 × 12 12 25.1 34.8 1440 111 6.43 7.03 247.2 31.28 2.67 2.1 158.5 2.13 0.263
L 200 × 100 × 10 10 23 29.24 1219 93.24 6.46 6.93 210.3 26.33 2.68 2.01 134.5 2.14 0.265
L 150 × 100 × 12 12 22.6 28.74 649.6 64.23 4.75 4.89 231.9 30.58 2.84 2.42 133.5 2.16 0.436
L 160 × 80 × 12 12 21.6 27.54 719.5 69.98 5.11 5.72 122 19.59 2.1 1.77 78.77 1.69 0.260
L 150 × 90 × 11 11 19.9 25.34 580.7 58.3 4.79 5.04 158.7 22.91 2.5 2.08 95.71 1.94 0.360
L 150 × 100 × 10 10 19 24.18 551.7 54.08 4.78 4.8 197.8 25.8 2.86 2.34 113.5 2.17 0.439
L 150 × 90 × 10 10 18.2 23.15 533.1 53.29 4.8 5 146.1 20.98 2.51 2.04 87.93 1.95 0.361
L 160 × 80 × 10 10 18.2 23.18 611.3 58.94 5.14 5.63 104.4 16.55 2.12 1.69 67.01 1.7 0.262
L 120 × 80 × 12 12 17.8 22.69 322.8 40.37 3.77 4 114.3 19.14 2.24 2.03 66.46 1.71 0.432
L 120 × 80 × 10 10 15 19.13 275.5 34.1 3.8 3.92 98.11 16.21 2.26 1.95 56.6 1.72 0.435
L 130 × 65 × 10 10 14.6 18.63 320.5 38.39 4.15 4.65 54.2 10.73 1.71 1.45 35.02 1.37 0.259
L 120 × 80 × 8 8 12.2 15.49 225.7 27.63 3.82 3.83 80.76 13.17 2.28 1.87 46.39 1.73 0.438
L 130 × 65 × 8 8 11.8 15.09 262.5 31.1 4.17 4.56 44.77 8.72 1.72 1.37 28.72 1.38 0.262
3.50
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Use a four-step problem-solving approach. Combine steps as needed for an efficient solution.
The angle and wide-flange steel shapes have the same cross-sectional area but the thicknesses of flange and web components of each section are quite different. First ,consider the angle section.
Part (a): Steel angle section.
1, 2. Conceptualize, Categorize: Approximate the unequal leg angle as one long rectangle with length b_L = 280\, mm and constant thickness t_L = 19\, mm, so b_L / t_L = 14.7. From Table 3-1, estimate coefficients k_1 = k_2 to be approximately 0.319.
3. Analyze: The maximum allowable torques can be obtained from Eqs. (3-72) and (3-73) based on the given allowable shear stress and allowable twist rotation, respectively, as

\tau_{\mathrm{max}}={\frac{T}{k_{1}b t^{2}}}\quad\quad(3-72)
\phi={\frac{T L}{(k_{2}b t^{3})G}}={\frac{T L}{G J_r}}\quad\quad(3-73)
T_{max1} = τ_ak_1b_Lt^2_L = 45\, MPa(0.319)(280 \,mm)[(19 \,mm)^2] = 1451\, N·m \quad (a)
T_{max2} = ɸ_a(k_2b_Lt^3_L)\frac{G}{L} = {\Bigg\lgroup} \frac{5π}{180} rad{\Bigg\rgroup}(0.319)(280 \,mm)[(19\, mm)^3]\frac{80\, GPa}{3500 \,mm} \quad (b)
\quad\quad = 1222\, N·m
Alternatively, compute the torsion constant for the angle J_L as
J_L = k_2b_Lt^3_L  =  6.128 × 10^5\, mm^4 \quad\quad\quad (c)
then use Eqs. (3-74)   and   (3-76) to find the maximum allowable torque values.

J_{f}\,=k_{2}b_{f}t_{f}^{3}\quad J_{w}\,=k_{2}(b_{w}-2t_{f})\bigl(t_{w}^{3}\bigr)\quad\quad(3-74a,b)

\tau_{\mathrm{max}}={\frac{2T\left({\frac{t}{2}}\right)}{J}}\ \ \mathrm{and}\ \ \phi={\frac{T L}{G J}}\quad\quad(3-76a,b)
From Eq. (3-76a), find T_{max1}, and from Eq. (3-76b), obtain T_{max2}:
T_{max1} = \frac{τ_aJ_L}{t_L} = 1451\, N·m \, and\,  T_{max2} = \frac{GJ_L}{L}ɸ_a = 1222 \,N·m
4. Finalize: For the angle, the lesser value controls, so T_{max} = 1222 \,N·m.
Part (b): Steel Wide-flange shape.
1, 2. Conceptualize, Categorize: The two flanges and the web are separate rectangles that together resist the applied torsional moment. However, the dimensions (b, t) of each of these rectangles are different: each flange has a width of b_f = 128\, mm and a thickness of t_f = 10.7 \,mm. The web has thickness t_w = 6.48\, mm and, conservatively,\, b_w = (d_w – 2t_f) = (353\, mm  –  2(10.7 \,mm)) = 331.6\, mm.
Based on the b/t ratios, find separate coefficients k_2 for the flanges and web from Table 3-1, then compute the torsion constants J for each component using Eqs. (3-74) as
For the flanges:
\quad\quad \frac{b_f}{t_f} = 11.963
so an estimated value for k_{2f} = 0.316. Thus,
J_f = k_{2f}b_ft^3_f = 0.316(128\, mm)[(10.7 \,mm)^3] = 4.955 × 10^4\, mm^4 \quad\quad (d)
For the web:
\quad\quad \frac{d_w – 2t_f}{t_w} = 51.173
and k_{2w} is estimated as k_{2w} = 0.329, so
J_w = k_{2w}(d_w – 2t_f)(t^3_w) = 0.329[353 \,mm – 2(10.7 \,mm)][(6.48\, mm)^3]
\quad\quad\quad\quad\quad = 2.968 × 10^4 \,mm^4\quad\quad\quad (e)
The torsion constant for the entire wide flange section is obtained by adding web and flange contributions [Eqs. (d)   and   (e)]:
J_w = 2J_f + J_w = [2(4.955) + 2.968](10^4)\, mm^4 = 1.288 × 10^5 \,mm^4\quad (f)
3. Analyze: Now, use Eq. (3-76a) and the allowable shear stress τ_a to compute the maximum allowable torque based on both flange and web maximum shear stresses:
T_{max f} = τ_a\frac{J_W}{t_f} = 45\, MPa {\Bigg\lgroup}\frac{1.288 × 10^5 \,mm^4}{10.7\, mm} {\Bigg\rgroup}= 542\, N·m \quad (g)
T_{max w} = τ_a\frac{J_W}{t_w} = 45\, MPa {\Bigg\lgroup}\frac{1.288 × 10^5 \,mm^4}{6.48\, mm} {\Bigg\rgroup}= 984\, N·m \quad (h)
Note that since the flanges have greater thickness than the web, the maximum shear stress will be in the flanges. So a calculation of T_{max} based on the maximum
web shear stress using Eq. (h) is not necessary.
Finally, use Eq. (3-76b) to compute T_{max} based on the allowable angle of twist:

\begin{array}{c} T_{max ɸ} = \frac{GJ_W}{L}ɸ_a = \frac{80\, GPa(1.288 × 10^5 \,mm^4)}{3500 \,mm}{\Bigg\lgroup}\frac{5π}{180}rad{\Bigg\rgroup} \\ \quad\quad\quad\quad = 257 \,N·m \end{array}\quad\quad\quad  (i)

4. Finalize: For the wide-flange shape, the most restrictive requirement is the allowable twist rotation, so T_{max} = 257\, N·m governs [Eq. (i)].
It is interesting to note that, even though both angle and wide-flange shapes have the same cross-sectional area, the wide flange shape is considerably weaker in torsion, because its component rectangles are much thinner (t_w = 6.48 \,mm, t_f = 10.7 \,mm) than the angle section (t_L= 19\, mm).
However, Chapter 5 shows that, although weak in torsion, the wide flange shape has a considerable advantage in resisting bending and transverse shear stresses.

Table 3-1 b/t 1.00 1.50 1.75 2.00 2.50 3.00 4 6 8 10
Dimensionless coefficients for rectangular bars k_1 0.208 0.231 0.239 0.246 0.258 0.267 0.282 0.298 0.307 0.312 0.333
k_2 0.141 0.196 0.214 0.229 0.249 0.263 0.281 0.298 0.307 0.312 0.333

Related Answered Questions