Question 7.3: A steel water tank shown in Fig. 7.6a is analysed as an SDOF......

A steel water tank shown in Fig. 7.6a is analysed as an SDOF system having a mass on top of cantilever which acts as a spring and dashpot for damping.

A blast load of P(t) is applied as shown in Fig. 7.6b. The values of the force are given in Table 7.6. Draw displacement, velocity and acceleration responses up to 0.5 s. The damping for steel may be assumed to be 2% of critical damping.

Table 7.6 Blast load at various times

0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 t
0 26.9 53.4 89 142 213 284 364 445 267 0 10^3 \times P(t)
التقاط
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Given
W = 133.5 kN

\begin{aligned}& \text { Mass }=m=\frac{133500}{9.81}=13608.5  kg \\& k=17500 \times 10^3  N / m \\& \omega_n=\sqrt{\frac{k}{m}}=\sqrt{\frac{17500 \times 10^3}{13608.5}}=35.8  rad / s \\& 35.8 / 2 \pi=5.7 cycles / s\end{aligned}

Fundamental period T = 1/5.7 = 0.175 s.

\Delta t_{c r}=\frac{T}{\pi}=\frac{0.175}{\pi}=0.055 s

Δt = T/10 = 0.0175s.
Use Δt = 0.01s

Figure 7.7 shows the displacement, velocity and acceleration response for the tank. The values are given in Table 7.7 and the program is given below.

Program 7.3: MATLAB program for dynamic response of SDOF by
Runge–Kutta method

Table 7.7 Displacement, velocity and acceleration at various times for Example 7.3

a v u t a v u t
-9.2278 -0.9789 0.0083 0.11 0 0 0 0
3.6697 -1.0071 -0.0011 0.12 18.5579 0.1605 0.0007 0.01
15.9694 -0.9077 -0.0195 0.13 27.4821 0.4375 0.0036 0.02
26.0770 -0.6991 -0.0250 0.14 14.2647 0.6282 0.0090 0.03
32.7473 -0.3973 -0.0273 0.15 -0.2441 0.6789 0.0157 0.04
25.1872 -0.0544 -0.0261 0.16 -13.6410 0.5909 0.0221 0.05
33.1480 0.2909 -0.0216 0.17 -24.9000 0.3783 0.0271 0.06
24.9539 0.5946 -0.0145 0.18 -31.3880 0.0805 0.0294 0.07
17.442 0.8188 -0.0056 0.19 -32.4410 -0.2509 0.0286 0.08
5.8649 0.9365 0.0038 0.20 -28.6582 -0.5663 0.0244 0.09
-21.2242 -0.8250 0.0174 0.10
No data was found
The 'Blue Check Mark' means that either the MATLAB code/script/answer provided in the answer section has been tested by our team of experts; or the answer in general has be fact checked.

Learn more on how do we answer questions.

Script File

%********************************************************************
% DYNAMIC RESPONSE DUE TO EXTERNAL LOADING RUNGE
KUTTA METHOD
%********************************************************************
ma=13608.5;
k=17500000;
wn=sqrt(k/ma)
r=0.02;
c=2.0*r*sqrt(k*ma)
u(1)=0;
v(1)=0;
tt=.5;
n=50;
n1=n+1
dt=tt/n;
td=.1;

jk=td/dt;
%**************************************************************
% EXTERNAL LOADING IS DEFINED HERE
%**************************************************************
for m=1:n1

p(m)=0.0;
end
p(2)=267000.0
p(3)=445000.0
p(4)=364000.0
p(5)=284000.0
p(6)=213000.0
p(7)=142000.0
p(8)=89000.0

p(9)=53400.0
p(10)=26700.0
an(1)=(p(1)-c*v(1)-k*u(1))/ma
t=0.0
for i=2:n1
ui=u(i-1)
vi=v(i-1)
ai=an(i-1)
d(1)=vi
q(1)=ai
for j=2:3
l=0.5
x=ui+l*dt*d(j-1)
d(j)=vi+l*dt*q(j-1)
q(j)=(p(i)-c*d(j)-k*x)/ma
end
j=4
l=1
x=ui+l*dt*d(j-1)
d(j)=vi+l*dt*q(j-1)
q(j)=(p(i)-c*d(j)-k*x)/ma
u(i)=u(i-1)+dt*(d(1)+2.0*d(2)+2.0*d(3)+d(4))/6.0
v(i)=v(i-1)+dt*(q(1)+2.0*q(2)+2.0*q(3)+q(4))/6.0
an(i)=(p(i)-c*v(i)-k*u(i))/ma
end
for i=1:n1
s(i)=(i-1)*dt
end
figure(1);
plot(s,u,‘k’);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response displacement u in m’)
title(‘ dynamic response’)
figure(2);
plot(s,v,‘k’);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response velocity v in m/sec’)
title(‘ dynamic response’)
figure(3);
plot(s,an,‘k’);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response acceleration a in m/sec’)
title(‘ dynamic response’)

figure(4);
plot(s,p,’k’)
xlabel(‘ time (t) in seconds’)
ylabel(‘ force in Newtons’)
title(‘ Excitation Force’)

التقاط
التقاط

Related Answered Questions