Question 6.8: A Z-section is subjected to bending moment M = 3 kN·m at an ......

A Z-section is subjected to bending moment M = 3  kN·m at an angle θ = -20° to the z axis, as shown in Fig. 6-32. Find the normal stresses at A, B, D, and E(σ_A, σ_B, σ_D , and~ σ_E , respectively) and also find the position of the neutral axis. Compare the results obtained from use of the flexure formula for principal centroidal axes to those obtained from the generalized flexure formula. Use the following numerical data: h = 200 mm, b = 90 mm, and thickness t = 15 mm.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Use a four-step problem-solving approach. Combine steps as needed for an efficient solution.
1, 2. Conceptualize, Categorize:
Properties of the cross section: Use the results of Example D-7 in Section D.8 of Appendix D. Moments of inertia and orientation of principal centroidal axes are
\quad\quad\quad\quad  I_z = 32.6 \times 10^6 ~ mm^4 \,\,\, I_Y = 2.4 \times 10^6 ~ mm^4
\quad\quad\quad\quad \theta_{p1} = 19.2° \quad\quad\quad\quad \theta_{p1} = (19.2)\frac{\pi}{180}radians
Coordinates (y, z) of points A, B, D, D’, E, and E’ for the rotated principal coordinate axes (labeled y and z in Fig. 6-32) are
\quad\quad\quad\quad \theta=-20\left({\frac{\pi}{180}}\right)\mathrm{radians}
\quad\quad\quad\quad y_A = \frac{h}{2} \cos (θ_{p1}) + {\Bigg\lgroup} b – \frac{t}{2}{\Bigg\rgroup}\sin (θ_{p1}) \quad y_A = 121.569 ~~ mm \\ \quad\quad\quad\quad y_B = – y_A \quad\quad\quad\quad\quad\quad\quad y_B = -121.569~~ mm \\\quad\quad\quad\quad  y_D = \frac{h}{2} \cos (θ_{p1}) – \frac{t}{2} \sin (θ_{p1}) \quad\quad\quad\quad y_D = 91.971~~ mm \\ \quad\quad\quad\quad y_D {^\prime} = \frac{h}{2} \cos (θ_{p1})\quad\quad\quad\quad\quad\quad\quad y_D {^\prime} = 94.438~~mm \\ \quad\quad\quad\quad y_E {^\prime} = -y_D{^\prime} \quad\quad\quad\quad\quad\quad\quad y_E {^\prime} = -94.438~~mm \\ \quad\quad\quad\quad y_E = -y_D \quad\quad\quad\quad\quad\quad\quad y_E = 91.971~~mm \\ \quad\quad\quad\quad z_A = {\Bigg\lgroup} b – \frac{t}{2}{\Bigg\rgroup} \cos (θ_{p1}) – \frac{h}{2}\sin (θ_{p1}) \quad z_A = 45.024~~ mm \\ \quad\quad\quad\quad  z_B = -z_A \quad\quad\quad\quad\quad\quad\quad z_B = -45.024 ~~mm \\ \quad\quad\quad\quad z_D = \frac{-h}{2} \sin (θ_{p1}) – \frac{t}{2} \cos (θ_{p1}) \quad\quad\quad\quad z_D = -39.969~~ mm \\ \quad\quad\quad\quad z_D {^\prime} = \frac{-h}{2} \sin (θ_{p1})\quad\quad\quad\quad\quad\quad\quad z_D {^\prime} = -32.887~~mm \\ \quad\quad\quad\quad z_E{^\prime} = -z_D{^\prime} \quad\quad\quad\quad\quad\quad\quad z_E{^\prime} = 32.887 ~~mm \\ \quad\quad\quad\quad z_ E = -z_D \quad\quad\quad\quad\quad\quad\quad z_E = 39.969 ~~mm
Bending moments (kN·m) M = 3 kN·m:
\quad\quad\quad\quad M_{y}=M\ \sin(\theta)\qquad M_{y}=-1.026\ \mathrm{kN}\cdot\mathrm{m} \\ \quad\quad\quad\quad\quad\ M_{z}=M\ \cos(\theta)\qquad M_{z}= 2.819\ \mathrm{kN}\cdot\mathrm{m}
3. Analyze:
Bending stresses at A, B, D, and E (see plots of normal stresses in Fig. 6-32b):
\quad\quad\quad\quad\sigma_{_A}={\frac{M_{y}z_{A}}{I_{y}}}\,-\,{\frac{M_{z}y_{A}}{I_{z}}}\,=\,-\,19.249\,-\,10.51\,3\,=\,-29.8\,\mathrm{MPa} \\ \quad\quad\quad\quad\sigma_{_B}={\frac{M_{y}z_{B}}{I_{y}}}\,-\,{\frac{M_{z}y_{B}}{I_{z}}}\,=\,\,19.249\,+\,10.51\,3\,=\,29.8\,\mathrm{MPa} \\ \quad\quad\quad\quad\sigma_{_D}={\frac{M_{y}z_{D}}{I_{y}}}\,-\,{\frac{M_{z}y_{D}}{I_{z}}}\,=\,\,17.088\,-\,7.953\,=\,9.14\,\mathrm{MPa} \\ \quad\quad\quad\quad\sigma_{_D}{^\prime}={\frac{M_{y}z_{D}{^\prime}}{I_{y}}}\,-\,{\frac{M_{z}y_{D}{^\prime}}{I_{z}}}\,=\,\,14.06\,-\,8.167\,=\,5.89 \,\mathrm{MPa} = -\sigma_{_E}{^\prime} \\ \quad\quad\quad\quad \sigma_{_E}={\frac{M_{y}z_{E}}{I_{y}}}\,-\,{\frac{M_{z}y_{_E}}{I_{z}}}\,=\,\,-17.088\,+\,7.953\,=\,-9.14 \,\mathrm{MPa}
Location of neutral axis:
\begin{array}{c}{{\quad\quad\quad\quad \tan(\beta)=\frac{I_{z}}{I_{y}}\,\tan(\theta)}}\\ \quad\quad\quad\quad {{\beta=-78.6^{\circ}}}\end{array}
4. Finalize: An alternate approach is to use the generalized bending theory for nonprincipal centroidal axes in the cross section that are parallel to the sides of the cross section. The y and z axes in Fig. 6-33 are now aligned with the web and flanges. From Example D-7, the moments and product of inertia are I_z = 29.29 × 10^6 mm^4, I_y = 5.667 × 10^6 mm^4, and ~I_{yz} = 9.366 × 10^6 mm^4.
(Note that I_{yz} is positive for this orientation of y and z axes.)
The y and z coordinates of point A, for example, are now easily computed in this system of axes as y_A = h/2 = 100 ~mm, z_A = b – t/2 = 82.5 ~mm. Applied moment M is at angle θ + θ_{p1} = 39.2° to the z axis, so the components of moment M along y and z axes are
\quad\quad\quad\quad M_{y}=-(3\mathrm{~kN}\cdot\mathrm{m})\mathrm{sin}( θ + θ_{p1})=-1.896\mathrm{~kN}\cdot\mathrm{m} \\ \quad\quad\quad\quad M_{z} = (3\mathrm{~kN}\cdot\mathrm{m})\mathrm{cos}( θ + θ_{p1})=2.325\mathrm{~kN}\cdot\mathrm{m}
Entering the numerical values given here in the general flexure formula (Eq. 6-47) gives the same compressive stress value as that reported previously:

\quad\quad\quad\quad \sigma_{_x}\,=\,{\frac{(M_{y}I_{z}\,+\,M_{z}I_{y z})z\, – \,(M_{z}I_{y}\,+\,M_{y}I_{y z})y}{I_{y}I_{z}-I_{y z}^{2}}}\quad\quad \mathrm(6-47)

\quad\quad\quad\quad \sigma_{_A}\,=\,{\frac{(M_{y}I_{z}\,+\,M_{z}I_{y z})z_{_A}\,-\,(M_{z}I_{y}\,+\,M_{y}I_{y z})y_{A}}{I_{y}I_{z}-I_{y z}^{2}}}=-29.8\ \mathrm{MPa}
Use of y and z coordinates of other points of interest on the cross section will give the normal stresses at B, D, and E listed in step 3.

6.33
6.32.1
6.32.2

Related Answered Questions

Question: 6.2

Verified Answer:

Use a four-step problem-solving approach. Combine ...
Question: 6.1

Verified Answer:

Use a four-step problem-solving approach. 1. Conce...