Question 6.8.Q2: According to the derivation of (T6.74), the CSDA range R^M0 ......

According to the derivation of (T6.74), the CSDA range R_{\mathrm{CSDA}}^{M_0}\left[\left(E_{\mathrm{K}}^{M_0}\right)\right] of an arbitrary heavy charged particle (CP) of rest energy M_0 c^2, charge ze, and incident kinetic energy \left(E_{\mathrm{K}}^{M_0}\right)_0 in a given absorber can be written in terms of the CSDA range of a proton R_{\mathrm{CSDA}}^{\mathrm{p}}\left[\left(E_{\mathrm{K}}^{\mathrm{p}}\right)\right] of rest energy m_{\mathrm{p}} c^2=938.3 \mathrm{MeV} and equivalent incident kinetic energy \left(E_{\mathrm{K}}^{\mathrm{p}}\right)_0 in the same absorber as

R_{\mathrm{CSDA}}^{M_0}\left[\left(E_{\mathrm{K}}^{M_0}\right)_0\right]=C\left(M_0, z\right) R_{\mathrm{CSDA}}^{\mathrm{p}}\left[\left(E_{\mathrm{K}}^{\mathrm{p}}\right)_0\right],         (6.112)

where C\left(M_0,z\right) is a correction factor dependent on rest mass M_0 and number z of electron charges e of the heavy CP given in (6.113) and \left(E_{\mathrm{K}}^{\mathrm{p}}\right)_0 is the equivalent incident kinetic energy of the proton related to the incident kinetic energy \left(E_{\mathrm{K}}^{M_0}\right)_0 of the heavy CP through the relationship given in (6.114)

C\left(M_0, z\right)=\frac{1}{z^2} \frac{M_0}{m_{\mathrm{p}}}          (6.113)

and

\left(E_{\mathrm{K}}^{\mathrm{p}}\right)_0=\frac{m_{\mathrm{p}}}{M_0}\left(E_{\mathrm{K}}^{M_0}\right)_0 \text {. }            (6.114)

(a) Derive (6.112) from the basic definition of R_{CSDA}\ and\ S_{col} for nonrelativistic heavy CPs.

(b) Determine the mass/charge correction factor C\left(M_0,z\right) for the following heavy CPs: deuteron d, triton t, α particle { }_2^4 \mathrm{He}^{2+} \text {, carbon ion }{ }_6^{12} \mathrm{C}^{6+}, and neon ion { }_{10}^{20} \mathrm{Ne}^{10+} \text {. }

(c) Determine the equivalent proton incident kinetic energy \left(E_{\mathrm{K}}^{\mathrm{p}}\right)_0 for the following heavy CPs: deuteron d, triton t, α particle { }_2^4 \mathrm{He}^{2+}, carbon ion { }_6^{12} \mathrm{C}^{6+}, and neon ion { }_{10}^{20} \mathrm{Ne}^{10+} , all of incident kinetic energy \left(E_{\mathrm{K}}^{M_0}\right)_0 of 500 MeV.

(d) Based on Fig. 6.26 that gives the CSDA range R_{\mathrm{CSDA}}^{\mathrm{p}} of protons in water against incident kinetic energy \left(E_{\mathrm{K}}^{\mathrm{p}}\right)_0, determine the CSDA range R_{\mathrm{CSDA}}^{M_0} in water for the following heavy CPs: deuteron d, triton t, α particle { }_2^4 \mathrm{He}^{2+}, carbon ion { }_6^{12} \mathrm{C}^{6+} , and neon ion { }_{10}^{20} \mathrm{Ne}^{10+}, all of incident kinetic energy \left(E_{\mathrm{K}}^{M_0}\right)_0 of 500 MeV.

Screenshot 2023-08-31 043103
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) The CSDA range R_{\mathrm{CSDA}}\left[\left(E_{\mathrm{K}}^{M_0}\right)\right] \text { of a heavy CP with rest mass } M_0 and charge ze traversing a stopping medium (absorber) is defined as

R_{\mathrm{CSDA}}\left[\left(E_{\mathrm{K}}^{M_0}\right)\right]=\int_0^{\left(E_{\mathrm{K}}^{M_0}\right)} \frac{\mathrm{d} E_{\mathrm{K}}}{S_{\mathrm{col}}\left(E_{\mathrm{K}}\right)}          (6.115)

where \left(E_{\mathrm{K}}^{M_0}\right) is the incident kinetic energy of the \mathrm{CP} \text { and } S_{\mathrm{col}}\left(E_{\mathrm{K}}^{M_0}\right) is the mass collision stopping power of the absorber for heavy particle of rest mass M_0. For a non-relativistic heavy \mathrm{CP}, S_{\mathrm{col}}\left(E_{\mathrm{K}}^{M_0}\right) is given by the Bethe stopping power equation as

\begin{aligned} S_{\mathrm{col}}\left[\left(E_{\mathrm{K}}^{M_0}\right)\right] & =\frac{C_{\mathrm{A}} z^2}{v^2} \ln \frac{2 m_{\mathrm{e}} v^2}{I}=\frac{C_{\mathrm{A}} z^2}{2} \frac{2 M_0}{M_0 v^2} \ln \left[\frac{4 m_{\mathrm{e}}}{I} \frac{M_0 v^2}{2 M_0}\right] \\ & =\frac{C_{\mathrm{A}} z^2}{2} \frac{M_0}{E_{\mathrm{K}}^{\mathrm{M}_0}} \ln \left[\frac{4 m_{\mathrm{e}}}{I} \frac{E_{\mathrm{K}}^{M_0}}{M_0}\right],\quad (6.116) \end{aligned}

where

C_A is a constant for a given absorber.
υ is the velocity of the heavy CP.
m_e is the rest mass of the electron \left(m_{\mathrm{e}}=0.511 \mathrm{MeV} / c^2\right)
I is the ionization/excitation potential of the stopping medium (absorber).
E_{\mathrm{K}}^{M_0} is the kinetic energy of the heavy \text { CP, i.e., } E_{\mathrm{K}}^{M_0}=\frac{1}{2} M_0 v^2 for non-relativistic heavy CP.

Combining (6.116) with (6.115) we get the following expression for R_{\mathrm{CSDA}}\left[\left(E_{\mathrm{K}}^{M_0}\right)\right].

R_{\mathrm{CSDA}}\left[\left(E_{\mathrm{K}}^{M_0}\right)_0\right]=\frac{2 M_0}{C_{\mathrm{A}} z^2} \int_0^{\left(E_{\mathrm{K}}^{M_0}\right)} \frac{\frac{E_{\mathrm{K}}^{M_0}}{M_0} \mathrm{~d} \frac{E_{\mathrm{K}}^{M_0}}{M_0}}{\ln \left[\frac{4 m_{\mathrm{e}}}{I} \frac{E_{\mathrm{K}}^{M_0}}{M_0}\right]}         (6.117)

which we now expand to make a link between the range R_{\mathrm{CSDA}}\left[\left(E_{\mathrm{K}}^{M_0}\right)\right] of the heavy CP of rest mass M_0 and charge ze and range R_{\mathrm{CSDA}}\left[\left(E_{\mathrm{K}}^{\mathrm{p}}\right)\right] of a proton of rest mass m_p = 938.3 MeV and charge e

\begin{aligned} R_{\mathrm{CSDA}}\left[\left(E_{\mathrm{K}}^{M_0}\right)_0\right] & =\frac{M_0}{z^2 m_{\mathrm{p}}}\left\{\frac{2 m_{\mathrm{p}}}{C_{\mathrm{A}}} \int_0^{E_{\mathrm{K}}^{M_0}} \frac{\left(\frac{E_{\mathrm{K}}^{M_0}}{m_{\mathrm{p}}} \frac{m_{\mathrm{p}}}{M_0}\right) \mathrm{d}\left(\frac{E_{\mathrm{K}}^{M_0}}{m_{\mathrm{p}}} \frac{m_{\mathrm{p}}}{M_0}\right)}{\ln \left[\left(\frac{4 m_{\mathrm{e}}}{I}\right)\left(\frac{E_{\mathrm{K}}^{M_0}}{m_{\mathrm{p}}} \frac{m_{\mathrm{p}}}{M_0}\right)\right]}\right\} \\ & =\frac{M_0}{z^2 m_{\mathrm{p}}}\left\{\frac{2 m_{\mathrm{p}}}{C_{\mathrm{A}}} \int_0^{E_{\mathrm{K}}^{\mathrm{p}}} \frac{\left(\frac{E_{\mathrm{K}}^{\mathrm{p}}}{m_{\mathrm{p}}}\right) \mathrm{d}\left(\frac{E_{\mathrm{K}}^{\mathrm{p}}}{m_{\mathrm{p}}}\right)}{\ln \left[\left(\frac{4 m_{\mathrm{e}}}{I}\right)\left(\frac{E_{\mathrm{K}}^{\mathrm{p}}}{m_{\mathrm{p}}}\right)\right]}\right\} \\ & =\frac{M_0}{z^2 m_{\mathrm{p}}} R_{\mathrm{CSDA}}^{\mathrm{p}}\left[\left(E_{\mathrm{K}}^{\mathrm{p}}\right)_0\right]=C\left(M_0, z\right) R_{\operatorname{CSDA}}\left[\left(E_{\mathrm{K}}^{\mathrm{p}}\right)_0\right],\quad (6.118) \end{aligned}

where C\left(M_0,z\right) is a correction factor for mass M_0 and charge ze of the heavy CP given in (6.119) and \left(E_{\mathrm{K}}^{\mathrm{p}}\right)_0 is the equivalent incident kinetic energy of a proton that satisfies (6.112) and is related to \left(E_{\mathrm{K}}^{\mathrm{M}_0}\right)_0, as shown in (6.120)

C\left(M_0, z\right)=\frac{M_0}{z m_{\mathrm{p}}}          (6.119)

and

\left(E_{\mathrm{K}}^{\mathrm{p}}\right)_0=\frac{m_{\mathrm{p}}}{M_0}\left(E_{\mathrm{K}}^{M_0}\right)_0 .           (6.120)

(b) The mass/charge correction factor C\left(M_0,z\right) for the five heavy charged particles is determined using (6.113) and listed in column (7) of Table 6.19 which also lists the basic relevant physical properties of the five heavy charged particles in addition to proton.

(c) The equivalent proton incident kinetic energy \left(E_{\mathrm{K}}^{\mathrm{p}}\right)_0 for use in (6.112) in determination of the CSDA range of CPs heavier than the proton is calculated with (6.114) for five CPs (deuteron, triton, α particle, carbon-6 ion, and neon-10 ion), all with incident kinetic energy of 500 MeV and given in column (4) of Table 6.20.

(d) The CSDA range of heavy CPs: proton, deuteron, triton, α particle, carbon ion, and neon ion, all with incident kinetic energy \left(E_{\mathrm{K}}^{M_0}\right)_0 of 500 MeV is determined with (6.112) and results are displayed in Table 6.20 and in Fig. 6.26. We note that 500 MeV proton, deuterons, and tritons have a range that exceeds the penetration in water required for radiotherapy, while carbon ions and neon ions at 500 MeV [i.e., at 42 MeV/u (∼500 : 12) and 25 MeV/u (∼500 : 20), respectively] exhibit CSDA ranges that are too low for use in practical radiotherapy.

Table 6.19 Physical properties relevant to calculation of CSDA range in water for a selection of six heavy charged particles: proton, deuteron, triton, α particle, carbon-6 ion, and neon-10 ion
\begin{array}{llllllll} \hline(1) & (2) & (3) & (4) & (5) & (6) & (7) & (8) \\ \hline(2) & \text { Heavy CP } & & z & A & M_0 c^2 & C\left(M_0, z\right) & m_{\mathrm{p}} / M_0 \\ \hline(3) & \text { Proton } & { }_1^1 \mathrm{H}=\mathrm{p} & 1 & 1 & 938.3 & 1.000 & 1.000 \\ \hline(4) & \text { Deuteron } & { }_1^2 \mathrm{H}=\mathrm{d} & 1 & 2 & 1875.6 & 1.999 & 0.500 \\ \hline(5) & \text { Triton } & { }_1^3 \mathrm{H}=\mathrm{t} & 1 & 3 & 2808.6 & 2.993 & 0.334 \\ \hline(6) & \alpha \text { particle } & { }_2^4 \mathrm{He}=\alpha & 2 & 4 & 3727.3 & 0.993 & 0.252 \\ \hline(7) & \text { Carbon-6 } & { }_6^{12} \mathrm{C}^{6+} & 6 & 12 & 11174.9 & 0.331 & 0.084 \\ \hline(8) & \text { Neon-10 } & { }_{10}^{20} \mathrm{Ne}^{10+} & 10 & 20 & 18617.7 & 0.198 & 0.050 \\ \hline \end{array}

Table 6.20 Various parameters of relevance to determination of the CSDA range in water for various heavy charged particles, all of incident kinetic energy of 500 MeV
\begin{array}{llllllll} \hline(1) & (2) & (3) & (4) & (5) & (6) & (7) & (8) \\ \hline(2) & \text { Heavy CP } & & \left(E_{\mathrm{K}}^{\mathrm{P}}\right)_0 & R_{\mathrm{CSDA}}^{\mathrm{p}} & \left(E_{\mathrm{K}}^{M_0}\right)_0 & \left(E_{\mathrm{K}}^{M_0}\right)_0 / A & R_{\mathrm{CSDA}}^{M_0} \\ \hline(3) & \text { Proton } & { }_1^1 \mathrm{H}=\mathrm{p} & 500 & 117 & 500 & 500 & 117 \\ \hline(4) & \text { Deuteron } & { }_1^2 \mathrm{H}=\mathrm{d} & 250 & 37.9 & 500 & 250 & 75.8 \\ \hline(5) & \text { Triton } & { }_1^3 \mathrm{H}=\mathrm{t} & 167 & 19 & 500 & 167 & 57.0 \\ \hline(6) & \alpha \text { particle } & { }_2^4 \mathrm{He}=\alpha & 125.9 & 11.6 & 500 & 125 & 11.5 \\ \hline(7) & \text { Carbon-6 } & { }_6^{12} \mathrm{C}^{6+} & 42 & 1.63 & 500 & 41.7 & 0.54 \\ \hline(8) & \text { Neon-10 } & { }_{10}^{20} \mathrm{Ne}^{10+} & 25.2 & 0.65 & 500 & 25 & 0.13 \\ \hline \end{array}

Related Answered Questions