Holooly Plus Logo

Question 7.2: An installation for heating and DHW consists of an alternati......

An installation for heating and DHW consists of an alternative internal combustion engine for micro-cogeneration S, boiler CB, heat exchanger HX, collectors C, hydraulic compensator HC, junction and branching points V1, two 3-way valves V2 and V3, inertia tank T and heating radiators D. Fig. E.7.3 is a simplified scheme of the installation where the symbols used for the components considered and the numbering of the flows is shown. Find the following:
(a) Define the incidence matrix A.
(b) Undertake mass balances in matrix form.
(c) Undertake energy balances in matrix form.
(d) Undertake exergy balances in matrix form to determine exergy destructions.
(e) Repeat the previous questions for the maximum level of aggregation of the installation.

لقطة الشاشة 2023-06-25 224039
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) This is an installation in which we have selected n = 10 components and m = 28 flows. The incidence matrix is represented in Table E.7.3.

(b) Multiplying the incidence matrix by the column vector M_{\mathrm{(25,1)}} gives the mass balances in each of the 10 components for the time-step considered.

  • {\bf S})\,{0}=\,-\dot{ m}_{1}\,+\dot{m}_{2}
  • \\ {\mathrm{CB)}}\,\mathrm{0}=\,-\dot m_{3}\,+\dot m_{4}
  • \\ {\mathbf C})\;0={\dot{m}}_{1}\;-{\dot{m}}_{2}\,+{\dot{m}}_{3}\,-{\dot{m}}_{4}\,-{\dot{m}}_{5}\,+{\dot{m}}_{6}
  • \\ {\mathbf{HC}})\;0={\dot{m}}_{5}\;-{\dot{m}}_{6}\,-{\dot{m}}_{7}\,+{\dot{m}}_{8}
  • \\ {V1})\;0={\dot{m}}_{7}\;-{\dot{m}}_{8}\,-{\dot{m}}_{9}\,+{\dot{m}}_{10}\,-{\dot{m}}_{17}\,+{\dot{m}}_{18}
  • \\ {\bf{V2}})\;0={\dot{m}}_{9}\;-{\dot{m}}_{10}\,-{\dot{m}}_{11}\,+{\dot{m}}_{12}
  • \\ {\bf{HX}})\;0={\dot{m}}_{11}\;-{\dot{m}}_{12}\,-{\dot{m}}_{13}\,+{\dot{m}}_{14}
  • \\ {\bf{T}})\;0={\dot{m}}_{13}\;-{\dot{m}}_{14}\,-{\dot{m}}_{15}\,+{\dot{m}}_{16}
  • \\ {\bf{V3}})\;0={\dot{m}}_{17}\;-{\dot{m}}_{18}\,-{\dot{m}}_{19}\,+{\dot{m}}_{20}
  • \\ {\bf{D}})\;0={\dot{m}}_{19}\;-{\dot{m}}_{20}

(c) Multiplying the incidence matrix by the column vector H_{(25.1)} gives the energy balances in each component. Flows 21 and 27 are heat transfer flows ({}{\dot{Q}}_{21},{\dot{Q}}_{27}), flow 23 is electrical energy ({\dot{E}}_{23}) exchanged during the time-step, flows 22 and 24 are external resources (\dot{H}_{22}={\dot{m}}_{22}HH{V}_{N G}\Delta t,\;\;\dot{H}_{24}={\dot{m}}_{24}HH{V}_{N G}\Delta{\bf t}) being the others mass flows \left(\dot{H}_{i}\,=\dot{m}_{i}h_{i}\Delta t\right).. We call flows 25 and 26 to the energy (exergy) variation in the inertia tank T and the hydraulic compensator HC respectively, during the time-step \Delta t considered.

  • \\ {\bf S})\,0\,=\,-\dot H_{1}\,+\dot{H}_{2}\,+\dot{H}_{22}\,-\,\dot{E}_{23}\,-\,\dot{Q}_{27}
  • \\ {\rm CB})\,0\,=\,-\dot H_{3}\,+\dot{H}_{4}\,+\dot{H}_{24}\,-\,\dot{H}_{28}
  • \\ {\bf C})\,0=\dot{{H}}_{1}\,-\dot{{H}}_{2}\,+\dot{{H}}_{3}\,-\dot{{H}}_{4}\,-\dot{{H}}_{5}\,+\dot{H}_{6}\,
  • \\ {\bf {HC}})\,0=\dot{{H}}_{5}\,-\dot{{H}}_{6}\,-\dot{{H}}_{7}\,+\dot{{H}}_{8}\,+\Delta U_{25}
  • \\ {V1})\,0=\dot{{H}}_{7}\,-\dot{{H}}_{8}\,-\dot{{H}}_{9}\,+\dot{{H}}_{10}\,-\dot{{H}}_{17}\,+\dot{H}_{18}\,
  • \\ {\bf V2})\,0=\dot{{H}}_{9}\,-\dot{{H}}_{10}\,-\dot{{H}}_{11}\,+\dot{{H}}_{12}
  • \\ {\bf HX})\,0=\dot{{H}}_{11}\,-\dot{{H}}_{12}\,-\dot{{H}}_{13}\,+\dot{{H}}_{14}
  • \\ {\bf {T}})\,0=\dot{{H}}_{13}\,-\dot{{H}}_{14}\,-\dot{{H}}_{15}\,+\dot{{H}}_{16}\,+\Delta U_{26}
  • \\ {\bf V3})\,0=\dot{{H}}_{17}\,-\dot{{H}}_{18}\,-\dot{{H}}_{19}\,+\dot{{H}}_{20}
  • \\ {\bf D})\,0=\dot{{H}}_{19}\,-\dot{{H}}_{20}\,-\dot{{Q}}_{21}

(d) Multiplying the incidence matrix by the column vector ^{}B_{(25,1)} and applying Eq. (7.7) gives the exergy destruction in each component. We know that for heat exchanged (\dot{B}_{Q,21,27} = {\dot Q}_{21,27}\cdot f_{h,21,27}), for mass flows (\dot{B}_{i}=\dot m_{i}b_{i}\Delta t) and for the external resources \left(\dot{B}_{22,24}=\dot{B}_{N G,22,24}^{c h}\Delta t\right), so we have

A_{(n,m)}B_{(m,1)}=D_{(n,1)}\qquad\qquad(7.7)
  • \\ \mathbf{S})\;{\dot{D}}_{S}=\;-{\dot{B}}_{1}\,+{\dot{B}}_{2}\,+{\dot{B}}_{22}\,-{\dot{E}}_{23}\,-{\dot{B}}_{Q.27}
  • \\ \mathbf{CC})\,\dot{D}_{C C}\,=\,-\dot{B}_{3}\,+\dot{B}_{4}\,+\dot{B}_{24}\,-\dot{B}_{28}
  • \\ {\bf C})\;\dot{D}_{C}=\dot{B}_{1}\;-\dot{B}_{2}\,+\dot{B}_{3}\,-\dot{B}_{4}\,-\dot{B}_{5}\,+\dot{B}_{6}
  • \\ \mathrm{CH})\;\dot{D}_{\mathrm{CH}}=\dot{B}_{5}\,-\dot{B}_{6}\,-\dot{B}_{7}\,+\dot{B}_{8}\,+\Delta A_{25}
  • \\ {\bf V}{\bf1})\,\dot{D}_{V1}=\dot{B}_{7}\,-\dot{B}_{8}\,-\dot{B}_{9}\,+\dot{B}_{10}\,-\dot{B}_{17}\,+\dot{B}_{18}
  • \\ \mathrm{V}2)\;\dot{D}_{\mathrm{V2}}\;=\dot{B}_{9}\;-\dot{B}_{10}\;-\dot{B}_{11}\,+\dot{B}_{12}\;
  • \\ {\bf HX})\;\dot{D}_{\mathrm{HX}}=\dot{B}_{11}\,-\dot{B}_{12}\,-\dot{B}_{13}\,+\dot{B}_{14}
  • \\ \mathrm{T})\,\dot D_{\mathrm{T}}=\dot B_{13}\,-\dot B_{14}\,-\dot B_{15}\,+\dot B_{16}\,+\Delta A_{26}
  • \\ \mathrm{V3})\,\dot D_{\mathrm{V3}}=\dot B_{17}\,-\dot B_{18}\,-\dot B_{19}\,+\dot B_{20}
  • \\ \mathrm{D})\,\dot D_{\mathrm{D}}=\dot B_{19}\,-\dot B_{20}\,-\dot B_{Q,21}

(e) At the maximum level of aggregation, the installation is a black box that exchanges re-sources and products with the exterior, see the scheme of Fig.7.4.

The components of the incidence matrix a_{(1,10)} with values different to 0 are shown in Table E.7.4.

The corresponding mass (for water), energy and exergy balances are reflected by the following equations

0=-\dot m_{15}+\dot m_{16} \\ 0=\dot{H}_{22}+\dot{H}_{24}-\dot{E}_{23}+\Delta U_{25}+\Delta U_{26}-\dot{H}_{15}+\dot{H}_{16}-\dot{Q}_{21}-\dot{H}_{27}-\dot{H}_{28} \\ \dot{D}_{T}=\dot{B}_{22}+\dot{B}_{24}-\dot{E}_{23}+\Delta A_{25}+\Delta A_{26}-\dot{B}_{15}+\dot{B}_{16}-\dot{B}_{Q.21}-\dot{B}_{27}-\dot{B}_{28}

Table E.7.3 Incidence matrix A.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
S -1 1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 -1 _ _ _ -1 _
CC _ _ -1 1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 _ _ _ -1
C 1 -1 1 -1 -1 1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
CH _ _ _ _ 1 -1 -1 1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 _ _ _
V1 _ _ _ _ _ _ 1 -1 -1 1 _ _ _ _ _ _ -1 1 _ _ _ _ _ _ _ _ _ _
V2 _ _ _ _ _ _ _ _ 1 -1 -1 1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
HX _ _ _ _ _ _ _ _ _ _ 1 -1 -1 1 _ _ _ _ _ _ _ _ _ _ _ _ _ _
T _ _ _ _ _ _ _ _ _ _ _ _ 1 -1 -1 1 _ _ _ _ _ _ _ _ _ 1 _ _
V3 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 -1 -1 1 _ _ _ _ _ _ _ _
D _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 -1 -1 _ _ _ _ _ _ _

Table E.7.4 Incidence matrix a.

22 24 23 25 26 15 16 21 27 28
a_{(1,10)}= T 1 1 -1 1 1 -1 1 -1 -1 -1
لقطة الشاشة 2023-06-25 235606

Related Answered Questions