Holooly Plus Logo

Question 7.10: Consider again the schema of Fig. E.7.3 corresponding to the......

Consider again the schema of Fig. E.7.3 corresponding to the installa-tion of Example E.7.2. From the exergies of the flows, find expressions for:
(a) The exergy efficiencies of the components and construct the matrices K_{D} and H_{D}
(b) The total efficiency of the installation.
(c) Write the matrix equation JB = 0

لقطة الشاشة 2023-07-19 145826
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) With the fuel and product of each component defined, the exergy efficiency is obtained by applying Eq. (7.23), with the results in Table E.7.21.
The matrix H_{D} is shown in Table E.7.22 and K_{D} in Table E.7.23.
(d) The total efficiency of the installation is obtained by applying Eq. (7.44), which refers to the installation at its maximum level of aggregation.

\varphi_{j}={\frac{P_{j}}{F_{j}}}\qquad\qquad(7.23) \\ \varphi_{T}={\frac{P_{T}}{F_{T}}}=1-{\frac{I_{T}}{F_{T}}}=1-{\frac{\sum_{i=1}^{m}D_{i}+\sum_{i=1}^{m}L_{i}}{F_{T}}}=1-\sum_{i=1}^{m}y D,i-\sum_{i=1}^{m}y_{L,i}\qquad\qquad(7.44) \\ \varphi_{T}=\frac{\dot{B}_{21}+\left(\dot{B}_{15}-\dot{B}_{16}\right)+\dot{B}_{23}}{\dot{B}_{22}+\dot{B}_{24}+\dot{\Delta B}_{25}+\dot{\Delta B}_{26}}

(e) The matrix J is shown in Table E.7.24.
The matrix equation JB = 0 is equivalent to the following system of 10 equations:

  • {\bf S})\ \ {0}=\,-k_{1}\dot{{B}}_{1}+k_{1}\dot{{B}}_{2}+\dot{B}_{22_{}}-\stackrel{}{k_{1}}\dot{B}_{23}-\dot{B}_{27}
  • \\ {\bf CC})\,\,0\,=\,-k_{2}\dot{B}_{3}\,+\,k_{2}\dot{B}_{4}\,+\,\dot{B}_{24}\,-\,\dot{B}_{28}
  • \\{\bf C})\ \ 0=\dot{B}_{1}\:-k_{4}\dot{B}_{2}\:+\dot{B}_{3}\:-k_{4}\dot{B}_{4}\:-k_{4}\dot{B}_{5}\:+\dot{B}_{6}
  • \\{\bf CH})\ \ 0=\dot{B}_{5}\;-\dot{B}_{6}\;-k_{5}\dot{B}_{7}\;+k_{5}\dot{B}_{8}\;+\dot{B}_{25}
  • \\{\bf V1})\ \ 0=\dot{B}_{7}\,-\,\dot{B}_{8}\,-k_{6}\dot{B}_{9}\,+\,k_{6}\dot{B}_{10}\,-\,k_{6}\dot{B}_{17}\,+\,k_{6}\dot{B}_{18}
  • \\{\bf V}2)\ \ 0=\dot{B}_{9}\,-\,\dot{B}_{10}^{}\,-\,\dot{k}_{7}\dot{B}_{11}\,+\,k_{7}\dot{B}_{12}
  • \\ \mathbf{{H}}\mathbf{X})\ \ 0={\dot{B}}_{11}\;-{\dot{B}}_{12}\;-k_{8}{\dot{B}}_{13}\;+k_{8}{\dot{B}}_{14}
  • \\ \mathbf T)\ \ 0\;=\dot{B}_{13}\;-\dot{B}_{14}\;-k_{9}\dot{B}_{15}\;+k_{9}\dot{B}_{16}\;+\dot{B}_{26}
  • \\ \mathbf{V3})\ \ \mathrm{0}=\dot{B}_{17}\;-\dot{B}_{18}\;-k_{10}\dot{B}_{19}\;+k_{10}\dot{B}_{20}
  • \\ \mathbf{D})\ \ 0={\dot{B}}_{19}\;-{\dot{B}}_{20}\;-k_{11}{\dot{B}}_{21}\;

Table E.7.21 Exergy efficiencies of equipment.

\mathrm{Exergy~efficiency~}\varphi
S \left({\dot{B}}_{1}\,-\,{\dot{B}}_{2}\right)/{\dot{B}}_{22}
CC \left({\dot{B}}_{5}\,-\,{\dot{B}}_{4}\right)/{\dot{B}}_{24}
C (\dot{B}_{5}\,+\dot{B}_{2}\,+\dot{B}_{4})/(\dot{B}_{1}\,+\dot{B}_{3}\,+\dot{B}_{6})
HC \left({\dot{B}}_7\,-{\dot{B}}_{8}\,\,\,\right){\big/}\left({\dot{B}}_{5}\,-{\dot{B}}_{6}\right)
V1 \left[(\dot{B}_{9}\,-\,\dot{B}_{10})\,+\,\left(\dot{B}_{17}\,-\,\dot{B}_{18}\right)\right]/\left(\dot{B}_{7}\,-\,\dot{B}_{8}\right)
V2 (\dot{B}_{11}-\dot{B}_{12})/(\dot{B}_{9}-\dot{B}_{10})
HX (\dot{B}_{13}-\dot{B}_{14})/(\dot{B}_{11}-\dot{B}_{12})
T (\dot{B}_{15}\,-\dot{B}_{16})/\bigl[(\dot{B}_{13}\,-\dot{B}_{14})\,+\dot{B}_{26}\bigr]
V3 (\dot{B}_{19}-\dot{B}_{20})/(\dot{B}_{17}-\dot{B}_{18})
D {\dot{B}}_{21}/({\dot{B}}_{19}-{\dot{B}}_{20})

Table E.7.22 Matrix H_{D}.

H_{D}= \frac{{\dot B_1}-{\dot B_{2}}}{\dot B_{22}} _ _ _ _ _ _ _ _ _
_ \frac{{\dot B_3}-{\dot B_{4}}}{\dot B_{24}} _ _ _ _ _ _ _ _
_ _ \frac{\dot{B}_{5}+\dot{B}_{2}+\dot{B}_{4}}{\dot{B}_{1}+\dot{B}_{3}+\dot{B}_{6}} _ _ _ _ _ _ _
_ _ _ \frac{{\dot{B}}_{7}-{\dot{B}}_{8}}{{\dot{B}}_{5}-{\dot{B}}_{6}} _ _ _ _ _ _
_ _ _ _ \frac{\left(\dot{B}_{9}-\dot{B}_{10}\right)+\left(\dot{B}_{17}-\dot{B}_{18}\right)}{\dot{B}_{7}-\dot{B}_{8}} _ _ _ _ _
_ _ _ _ _ \frac{{\dot{B}}_{11}-{\dot{B}}_{12}}{{\dot{B}}_{9}-{\dot{B}}_{10}} _ _ _ _
_ _ _ _ _ _ \frac{{\dot{B}}_{13}-{\dot{B}}_{14}}{{\dot{B}}_{11}-{\dot{B}}_{12}} _ _ _
_ _ _ _ _ _ _ \frac{\dot{B}_{15}-\dot{B}_{16}}{\left(\dot{B}_{13}-\dot{B}_{14}\right)+\dot{B}_{26}} _ _
_ _ _ _ _ _ _ _ \frac{{\dot{B}}_{19}-{\dot{B}}_{20}}{{\dot{B}}_{17}-{\dot{B}}_{18}} _
_ _ _ _ _ _ _ _ _ \frac{{\dot{B}}_{21}}{{\dot{B}}_{19}-{\dot{B}}_{20}}

Table E.7.23 Matrix K_{D}.

K_{D}= \frac{{\dot{B}}_{22}}{{\dot{{B}}}_{1}-{\dot{B}}_{2}} _ _ _ _ _ _ _ _ _
_ \frac{{\dot{B}}_{24}}{{\dot{{B}}}_{3}-{\dot{B}}_{4}} _ _ _ _ _ _ _ _
_ _ \frac{\dot{B}_{1}+\dot{B}_{3}+\dot{B}_{6}}{\dot{B}_{5}+\dot{B}_{2}+\dot{B}_{4}} _ _ _ _ _ _ _
_ _ _ \frac{{\dot{B}}_{5}-{\dot{B}}_{6}}{{\dot{B}}_{7}-{\dot{B}}_{8}} _ _ _ _ _ _
_ _ _ _ \frac{\dot{B}_{7-}\dot{B}_{8}}{\left(\dot{B}_{9}-\dot{B}_{10}\right)+\left(\dot{B}_{17}-\dot{B}_{18}\right)} _ _ _ _ _
_ _ _ _ _ \frac{{\dot{B}}_{9}-{\dot{B}}_{10}}{{\dot{B}}_{11}-{\dot{B}}_{12}} _ _ _ _
_ _ _ _ _ _ \frac{{\dot{B}}_{11}-{\dot{B}}_{12}}{{\dot{B}}_{13}-{\dot{B}}_{14}} _ _ _
_ _ _ _ _ _ _ \frac{\left(\dot{B}_{13}-\dot{B}_{14}\right)+\dot{B}_{26}}{\dot{B}_{15}-\dot{B}_{16}} _ _
_ _ _ _ _ _ _ _ \frac{{\dot{B}}_{17}-{\dot{B}}_{18}}{{\dot{B}}_{19}-{\dot{B}}_{20}} _
_ _ _ _ _ _ _ _ _ \frac{\dot{B}_{19}-\dot{B}_{20}}{\dot{B}_{21}}

Table E.7.24 Matrix J.

J = -k_{1} k_{1} _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 -k_{1} _ _ _ -1 _
_ _ -k_{2} k_{2} _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 _ _ _ -1
1 -k_{4} 1 -k_{4} -k_{4} 1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ 1 -1 -k_{5} k_{5} _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 _ _ _
_ _ _ _ _ _ 1 -1 -k_{6} k_{6} _ _ _ _ _ _ -k_{6} k_{6} _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ 1 -1 -k_{7} k_{7} _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ 1 -1 -k_{8} k_{8} _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ 1 -1 -k_{9} k_{9} _ _ _ _ _ _ _ _ _ 1 _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 -1 -k_{10} k_{10} _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 -1 -k_{11} _ _ _ _ _ _ _

Related Answered Questions