# Question 2.SP.11: At approximately what temperature will water boil if the ele......

At approximately what temperature will water boil if the elevation is  10,000 ft  ?

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.

From Appendix A, Table A.3, the pressure of the standard atmosphere at 10 000-ft elevation is 10.11 psia. From Appendix A, Table A.1, the saturationvapor pressure  $p_v$   of water is 10.11 psia at about 193°F (by interpolation). Hence the water at 10,000 ft will boil at about 193°F.

Compared with the boiling temperature of  212° F at sea level, this explains why it takes longer to cook at high elevations.

 TABLE A.1  Physical properties of water at standard sea-level atmospheric pressure ${ }^a$ Temperature, Specific weight, Density, Absolute viscosity${}^b$ Kinematic viscosity,${}^b$ Surface tension, Saturation vapor pressure, Satur’n vapor pressure head, Bulk  modulus  of  elasticity, $\boldsymbol{T}$ $\boldsymbol{\gamma}$ $\boldsymbol{\rho}$ $\boldsymbol{ \mu}$ $\boldsymbol{\nu}$ $\boldsymbol{\sigma}$ $\boldsymbol{ p_v}$ $\boldsymbol{ p_v}/ \boldsymbol{\gamma}$ $\boldsymbol{E_v}$ ${ }^{\circ} \mathbf{F}$ $\mathbf{l b} / \mathbf{f t}^3$ $\boldsymbol{ slugs/ft { }^3}$ $10^{-6} \mathbf{lb} \cdot \mathrm{sec} / \mathbf{ft}^2$ $10^{-6} \mathbf{ft}^2 / \mathbf{sec}$ $\mathbf{lb} / \mathbf{ft}$ psia ft abs psi 32${ }^{\circ} \mathrm{F}$ 62.42 1.940 37.46 19.31 0.00518 0.0885 0.204 293,000 40${ }^{\circ} \mathrm{F}$ 62.43 1.940 32.29 16.64 0.00514 0.122 0.281 294,000 50${ }^{\circ} \mathrm{F}$ 62.41 1.940 27.35 14.10 0.00509 0.178 0.411 305,000 60${ }^{\circ} \mathrm{F}$ 62.37 1.938 23.59 12.17 0.00504 0.256 0.592 311,000 70${ }^{\circ} \mathrm{F}$ 62.30 1.936 20.50 10.59 0.00498 0.363 0.839 320,000 80${ }^{\circ} \mathrm{F}$ 62.22 1.934 17.99 9.30 0.00492 0.507 1.173 322,000 90${ }^{\circ} \mathrm{F}$ 62.11 1.931 15.95 8.26 0.00486 0.698 1.618 323,000 100${ }^{\circ} \mathrm{F}$ 62.00 1.927 14.24 7.39 0.00480 0.949 2.20 327,000 110${ }^{\circ} \mathrm{F}$ 61.86 1.923 12.84 6.67 0.00473 1.275 2.97 331,000 120${ }^{\circ} \mathrm{F}$ 61.71 1.918 11.68 6.09 0.00467 1.692 3.95 333,000 130${ }^{\circ} \mathrm{F}$ 61.55 1.913 10.69 5.58 0.00460 2.22 5.19 334,000 140${ }^{\circ} \mathrm{F}$ 61.38 1.908 9.81 5.14 0.00454 2.89 6.78 330,000 150${ }^{\circ} \mathrm{F}$ 61.20 1.902 9.05 4.76 0.00447 3.72 8.75 328,000 160${ }^{\circ} \mathrm{F}$ 61.00 1.896 8.38 4.42 0.00441 4.74 11.18 326,000 170${ }^{\circ} \mathrm{F}$ 60.80 1.890 7.80 4.13 0.00434 5.99 14.19 322,000 180${ }^{\circ} \mathrm{F}$ 60.58 1.883 7.26 3.85 0.00427 7.51 17.84 318,000 190${ }^{\circ} \mathrm{F}$ 60.36 1.876 6.78 3.62 0.00420 9.34 22.28 313,000 200${ }^{\circ} \mathrm{F}$ 60.12 1.868 6.37 3.41 0.00413 11.52 27.59 308,000 212${ }^{\circ} \mathrm{F}$ 59.83 1.860 5.93 3.19 0.00404 14.69 35.36 300,000 ${ }^{\circ} \mathbf{C}$ $\mathbf{kN} / \mathbf{m}^3$ $\mathbf{~kg} / \mathbf{m}^3$ $\mathbf{~N} \cdot \mathbf{s} / \mathbf{m}^2$ $10^{-6} \mathbf{~m}^2 / \mathbf{s}$ $\mathbf{N} / \mathbf{m}$ $\mathbf{kN} / \mathbf{m}^2 \text { abs }$ $\mathbf{m} \text { abs }$ $10^6 \mathbf{kN} / \mathbf{m}^2$ 0${ }^{\circ} \mathrm{C}$ 9.805 999.8 0.001781 1.785 0.0756 0.611 0.0623 2.02 5${ }^{\circ} \mathrm{C}$ 9.807 1000.0 0.001518 1.519 0.0749 0.872 0.0889 2.06 10${ }^{\circ} \mathrm{C}$ 9.804 999.7 0.001307 1.306 0.0742 1.230 0.1255 2.1 15${ }^{\circ} \mathrm{C}$ 9.798 999.1 0.001139 1.139 0.0735 1.710 0.1745 2.14 20${ }^{\circ} \mathrm{C}$ 9.789 998.2 0.001002 1.003 0.0728 2.34 0.239 2.18 25${ }^{\circ} \mathrm{C}$ 9.777 997.0 0.000890 0.893 0.072 3.17 0.324 2.22 30${ }^{\circ} \mathrm{C}$ 9.765 995.7 0.000798 0.800 0.0712 4.24 0.434 2.25 40${ }^{\circ} \mathrm{C}$ 9.731 992.2 0.000653 0.658 0.0696 7.38 0.758 2.28 50${ }^{\circ} \mathrm{C}$ 9.690 988.0 0.000547 0.553 0.0679 12.33 1.272 2.29 60${ }^{\circ} \mathrm{C}$ 9.642 983.2 0.000466 0.474 0.0662 19.92 2.07 2.28 70${ }^{\circ} \mathrm{C}$ 9.589 977.8 0.000404 0.413 0.0644 31.16 3.25 2.25 80${ }^{\circ} \mathrm{C}$ 9.530 971.8 0.000354 0.364 0.0626 47.34 4.97 2.2 90${ }^{\circ} \mathrm{C}$ 9.467 965.3 0.000315 0.326 0.0608 70.10 7.40 2.14 100${ }^{\circ} \mathrm{C}$ 9.399 958.4 0.000282 0.294 0.0589 101.33 10.78 2.07 ${ }^a$ In these tables, if (for example, at $32^{\circ} \mathrm{F}$ ) $\mu$ is given as $37.46$ and the units are $10^{-6} \mathrm{lb} \cdot \mathrm{sec} / \mathrm{ft}^2$ then $\mu=37.46 \times 10^{-6} \mathrm{lb} \cdot \mathrm{sec} / \mathrm{ft}^2$. ${ }^b {\text {For viscosity, see also Figs. A.1 and A.2. }}$.

 TABLEA.3 The ICAO${}^a$   standard atmosphere${}^b$ $\textbf { Elevation above sea level }$ $\textbf { Temperature } \\ T$ $\textbf { Absolute pressure } \\ p$ $\textbf { Specific weight } \\ \gamma$ $\textbf { Density, } \\ \rho$ $\textbf { Absolute viscosity } \\ \mu$ $\textbf { Kinematic viscosity } \\\nu$ $\textbf { Speed of sound } \\ c$ $\textbf { Gravitational acceleration } \\ g$ $\mathbf{ft}$ ${ }^{\circ} \mathbf{F}$ $\mathbf{psia}$ $\mathbf{lb} / \mathbf{ft}^3$ $\mathbf{sl} / \mathbf{ug} / \mathbf{ft}^3$ $10^{-6} \mathbf{lb} \cdot \mathbf{sec} / \mathbf{ft}^2$ $10^{-3} \mathbf{ft}^2 / \mathbf{sec}$ $\mathbf{ft} / \mathbf{sec}$ $\mathbf{ft} / \mathbf{sec}^2$ 0 59.000 14.6959 0.076472 0.0023768 0.37372 0.15724 1116.45 32.1740 5,000 41.173 12.2283 0.065864 0.0020481 0.36366 0.17756 1097.08 32.158 10,000 23.355 10.1083 0.056424 0.0017555 0.35343 0.20133 1077.4 32.142 15,000 5.545 8.2970 0.048068 0.0014961 0.34302 0.22928 1057.35 32.129 20,000 -12.255 6.7588 0.040694 0.0012672 0.33244 0.26234 1036.94 32.113 25,000 -30.048 5.4607 0.034224 0.0010663 0.32166 0.30167 1016.11 32.097 30,000 -47.832 4.3726 0.028573 0.00089065 0.31069 0.34884 994.85 32.081 35,000 -65.607 3.4676 0.023672 0.00073819 0.29952 0.40575 973.13 32.068 40,000 -69.700 2.7300 0.018823 0.00058726 0.29691 0.50559 968.08 32.052 45,000 -69.700 2.1489 0.014809 0.00046227 0.29691 0.6423 968.08 32.036 50,000 -69.700 1.6917 0.011652 0.00036391 0.29691 0.81589 968.08 32.020 60,000 -69.700 1.0488 0.007218 0.00022561 0.29691 1.3160 968.08 31.991 70,000 -67.425 0.6509 0.004449 0.0001392 0.29836 2.1434 970.9 31.958 80,000 -61.976 0.4063 0.002737 0.000085707 0.30182 3.5215 977.62 31.930 90,000 -56.535 0.2554 0.001695 0.000053145 0.30525 5.7436 984.28 31.897 100,000 -51.099 0.1616 0.001058 0.000033182 0.30865 9.3018 990.91 31.868 $\mathbf{km}$ ${ }^{\circ} \mathbf{C}$ $\mathbf{kPa} a b s$ $\mathbf{~N} / \mathbf{m}^3$ $\mathbf{~kg} / \mathbf{m}^3$ $10^{-6} \mathbf{~N} \cdot \mathbf{s} / \mathbf{m}^2$ $10^{-6} \mathbf{~m}^2 / \mathbf{s}$ $\mathbf{m} / \mathbf{s}$ $\mathbf{m} / \mathbf{s}^2$ 0 15.000 101.325 12.0131 1.2250 17.894 14.607 340.294 9.80665 1 8.501 89.876 10.8987 1.1117 17.579 15.813 336.43 9.8036 2 2.004 79.501 9.8652 1.0066 17.260 17.147 332.53 9.8005 3 -4.500 70.121 8.9083 0.90925 16.938 18.628 328.58 9.7974 4 -10.984 61.66 8.0250 0.81935 16.612 20.275 324.59 9.7943 5 -17.474 54.048 7.2105 0.73643 16.282 22.110 320.55 9.7912 6 -23.963 47.217 6.4613 0.66011 15.949 24.161 316.45 9.7882 8 -36.935 35.651 5.1433 0.52579 15.271 29.044 308.11 9.7820 10 -49.898 26.499 4.0424 0.41351 14.577 35.251 299.53 9.7759 12 -56.500 19.399 3.0476 0.31194 14.216 45.574 295.07 9.7697 14 -56.500 14.170 2.2247 0.22786 14.216 62.391 295.07 9.7636 16 -56.500 10.352 1.6243 0.16647 14.216 85.397 295.07 9.7575 18 -56.500 7.565 1.1862 0.12165 14.216 116.86 295.07 9.7513 20 -56.500 5.529 0.8664 0.08891 14.216 159.89 295.07 9.7452 25 -51.598 2.549 0.3900 0.04008 14.484 361.35 298.39 9.7300 30 -46.641 1.197 0.1788 0.01841 14.753 801.34 301.71 9.7147 $a$ International Civil Aviation Organization; see Sec. 2.9. $b$ In these tables, if (for example, at $0 \mathrm{ft}$ ) $\mu$ is given as $0.37372$ and the units are $10^{-6} \mathrm{lb} \cdot \mathrm{sec} / \mathrm{ft}^2$ then $\mu=0.37372 \times 10^{-6} \mathrm{lb} \cdot \mathrm{sec} / \mathrm{ft}^2$

Question: 2.SP.4

## A vessel contains 85 L of water at 10°C and atmospheric pressure. If the water is heated to 70°C, what will be the percentage change in its volume? What weight of water must be removed to maintain the volume at its original value? Use Appendix A  ...

Volume,              \sout{V} _{10}=85 \mat...
Question: 2.SP.3

## At a depth of 8 km in the ocean the pressure is 81.8 MPa. Assume that the specific weight of seawater at the surface is 10.05kN/m³ and that the average volume modulus is 22.34×10 ^9 N/m² for that pressure range. (a) What will be the change in specific volume between that at the (c) What will be ...

(a) Eq. (2.2): \quad v_{1}=1 / p_{1}=g / \g...
Question: 2.SP.5

## If an artificial atmosphere consists of 20% oxygen and 80% nitrogen by-volume, at 14.7 psia and 60°F, what are (a) the specific weight and partial pressure of the oxygen and (b) the specific weight of the mixture? ...

Table A.5:  R \text { (oxygen })=1554 \math...
Question: 2.SP.6

## (a) Calculate the density, specific weight, and specific volume of oxygen at 100°F and 15 psia (pounds per square inch absolute; see Sec. 2.7). (b) What would be the temperature and pressure of this gas if we compressed it isentropically to 40% of its original volume? (c) If the process described ...

Table A.5 for oxygen \left(\mathrm{O}_{2}\r...
Question: 2.SP.10

## Water at 10°C stands in a clean glass tube of 2−mm diameter at a height of 35 mm . What is the true static height? ...

Table A.1 at 10^{\circ} \mathrm{C}: \quad \...
Question: 2.SP.9

## In Fig. S2.9 oil of absolute viscosityμ fills the small gap of thicknessY. (a) Neglecting fluid stress exerted on the circular underside, obtain an expression for the torqueT required to rotate the truncated cone at constant speedω. (b) What is the rate of heat generation, in joules per second, if ...

(a) $U=\omega r ; \quad$  for small g...
Question: 2.SP.1

## The specific weight of water at ordinary pressure and temperature is 62.4lb/ft³ . The specific gravity of mercury is 13.56. Compute the density of water and the specific weight and density of mercury. ...

\begin{array}{rlr}\rho_{\text {water }} &am...
Question: 2.SP.8

## A 1-in-wide space between two horizontal plane surfaces is filled with SAE 30 Western lubricating oil at 80°F . What force is required to drag a very thin plate of 24−ft² area through the oil at a velocity of 20ft/min if the plate is 0.33 in from one surface? ...

Fig. A.1: \quad \mu=0.0063 \mathrm{lb} \cdo...
Question: 2.SP.7

## Calculate the density, specific weight, and specific volume of chlorine gas at 25°C and pressure of 600kN/m² abs (kilonewtons per square meter absolute; see Sec. 2.7). Given the molar mass of chlorine (Cl2)=71. ...

Sec. $2.7$ : R=\frac{R_0}{M}=\...
 \begin{aligned}\rho_{\text {water }} &...