Holooly Plus Logo

Question 8.CS.1: Cam and Follower Stress Analysis of an Intermittent-Motion M......

Cam and Follower Stress Analysis of an Intermittent-Motion Mechanism

Figure 7.16 shows a camshaft and follower of an intermittent-motion mechanism. For the position indicated, the cam exerts a force F_{max} on the follower. What are the maximum stress at the contact line between the cam and follower, and the deflection?

Given: The shapes of the contacting surfaces are known. The material of all parts is AISI 1095 steel carburized on the surfaces, oil quenched, and tempered (Q&T) at 650°C.

Data:

F_{\max }=P_{\max }=1.6  kips , \quad r_c=1.5 \text { in., } \quad D_f=L_4=1.5  in

E=30 \times 10^6  psi , \quad S_y=80  ksi

Assumptions: Frictional forces can be neglected. The rotational speed is slow so that the loading is considered static.

F7.16
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

See Figure 7.16, Table 8.4, and Tables B.1, and B.4 in Appendix B.

Equations on the second column of case A of Table 8.4 apply. We first determine the half width a of the contact patch. Since E_1=E_2=E \text { and } \Delta=2 / E, we have

a=1.076 \sqrt{\frac{F_{\max }}{L_4} r_c \Delta}

Substitution of the given data yields

\begin{aligned} a & =1.076\left[\frac{1600}{1.5}(1.5)\left(\frac{2}{30 \times 10^6}\right)\right]^{1 / 2} \\ & =11.113\left(10^{-3}\right) in . \end{aligned}

The rectangular patch area is

2 a L_4=2\left(11.113 \times 10^{-3}\right)(1.5)=33.34\left(10^{-3}\right) \text { in. }^2

Maximum contact pressure is then

\begin{aligned} p_o & =\frac{2}{\pi} \frac{F_{\max }}{a L_4} \\ & =\frac{2}{\pi} \frac{1600}{\left(11.113 \times 10^{-3}\right)(1.5)}=61.11  ksi \end{aligned}

The deflection \delta of the cam and follower at the line of contact is obtained as follows:

\delta=\frac{0.579 F_{\max }}{E L_4}\left(\frac{1}{3}+\ln \frac{2 r_c}{a}\right)

Introducing the numerical values,

\begin{aligned} \delta & =\frac{0.579(1600)}{30 \times 10^6(1.5)}\left(\frac{1}{3}+\ln \frac{2 \times 1.5}{11.113 \times 10^{-3}}\right) \\ & =0.122\left(10^{-3}\right)  in \end{aligned}

Comment: The contact stress is determined to be less than the yield strength and the design is satisfactory. The calculated deflection between the cam and the follower is very small and does not affect the system performance.

TABLE 8.4
Maximum Pressure p_o , and Deflection \delta of Two Bodies at the Point of Contact
Configuration \text { Spheres: } p_o=1.5 \frac{F}{\pi a^2} \text { Cylinders: } p_o=\frac{2}{\pi} \frac{F}{a L}
\quad\quad\quad\quad\quad\quad\quad\quad

\text { Sphere on a flat surface } \\ \\ \begin{aligned} & a=0.880 \sqrt[3]{F r_1 \Delta} \\ & \delta=0.775 \sqrt[3]{F^2 \frac{\Delta^2}{r_1}} \end{aligned} \text { Cylinder on a flat surface } \\ \\ \begin{aligned} & a=1.076 \sqrt{\frac{F}{L} r_1 \Delta} \\ & \text { For } E _1= E _2= E \\ & \delta=\frac{0.579 F}{E L}\left(\frac{1}{3}+\ln \frac{2 r_1}{a}\right) \end{aligned}
\quad\quad\quad\quad\quad\quad\quad\quad

\text { Two spherical balls } \\ \\ \begin{aligned} & a=0.880 \sqrt[3]{F \frac{\Delta}{m}} \\ & \delta=0.775 \sqrt[3]{F^2 \Delta^2 m} \end{aligned} \text { Two cylindrical rollers } \\ \\  a=1.076 \sqrt{\frac{F \Delta}{L m}}
\quad\quad\quad\quad\quad\quad\quad\quad

\text { Sphere on a spherical seat } \\ \\ \begin{aligned} & a=0.880 \sqrt[3]{F \frac{\Delta}{n}} \\ & \delta=0.775 \sqrt[3]{F^2 \Delta^2 n} \end{aligned} \text { Cylinder on a cylindrical seat } \\ \\ a=1.076 \sqrt{\frac{F \Delta}{L n}}
Source: [9].
Notes: \Delta=\frac{1}{E_1}+\frac{1}{E_2}, m=\frac{1}{r_1}+\frac{1}{r_2}, n=\frac{1}{r_1}-\frac{1}{r_2} , where the modulus of elasticity (E ) and radius
(r ) are for the contacting members, 1 and 2. The L represents the length of the cylinder
(Figure 8.7). The total force pressing two spheres or cylinder is F . Poisson’s ratio \nu in the
formulas is taken as 0.3.

 

TABLE B.4
Mechanical Properties of Selected Heat-Treated Steels
AISI Number Treatment Temperature (°C) Ultimate Strength S_u (MPa) Yield Strength S_y (MPa) Elongation in 50 mm (%) Reduction in Area (%) Brinell Hardness (HB)
1030 WQ&T 205 848 648 17 47 495
WQ&T 425 731 579 23 60 302
WQ&T 650 586 441 32 70 207
Normalized 925 521 345 32 61 149
Annealed 870 430 317 35 64 137
1040 OQ&T 205 779 593 19 48 262
OQ&T 425 758 552 21 54 241
OQ&T 650 634 434 29 65 192
Normalized 900 590 374 28 55 170
Annealed 790 519 353 30 57 149
1050 WQ&T 205 1120 807 9 27 514
WQ&T 425 1090 793 13 36 444
WQ&T 650 717 538 28 65 235
Normalized 900 748 427 20 39 217
Annealed 790 636 365 24 40 187
1060 OQ&T 425 1080 765 14 41 311
OQ&T 540 965 669 17 45 277
OQ&T 650 800 524 23 54 229
Normalized 900 776 421 18 37 229
Annealed 790 626 372 11 38 179
1095 OQ&T 315 1260 813 10 30 375
OQ&T 425 1210 772 12 32 363
OQ&T 650 896 552 21 47 269
Normalized 900 1010 500 9 13 293
Annealed 790 658 380 13 21 192
4130 WQ&T 205 1630 1460 10 41 467
WQ&T 425 1280 1190 13 49 380
WQ&T 650 814 703 22 64 245
Normalized 870 670 436 25 59 197
Annealed 865 560 361 28 56 156
4140 OQ&T 205 1770 1640 8 38 510
OQ&T 425 1250 1140 13 49 370
OQ&T 650 758 655 22 63 230
Normalized 870 870 1020 18 47 302
Annealed 815 655 417 26 57 197
Source: ASM Metals Reference Book, 3rd ed. Materials Park, OH, American Society for Metals, 1993.
Notes: To convert from MPa to ksi, divide given values by 6.895.
Values tabulated for 25 mm round sections and of gage length 50 mm. The properties for quenched and tempered steel are
from a single heat: OQ&T, oil-quenched and tempered; WQ&T, water-quenched and tempered.
Screenshot 2023-02-18 155225

Related Answered Questions