Question 9.6.Q1: Boron neutron capture therapy (BNCT) is a binary radiotherap......

Boron neutron capture therapy (BNCT) is a binary radiotherapy modality used in treatment of brain lesions. First, the patient is injected with a tumor seeking drug containing a stable boron-10 nuclide that has a high cross section for thermal neutron capture (σ = 3838 b) that is over three orders of magnitude larger than the thermal neutron cross section of other nuclides (H, C, N, and O) constituting human tissue. In the second step, the patient is exposed to thermal neutrons which trigger a biologically destructive nuclear reaction in boron-10 accumulated in the tumor, thereby significantly increasing, at least in principle, the therapeutic ratio and the tumor control probability (TCP).

Thermal neutron capture reaction in boron-10 proceeds as shown in Fig. 9.6 below

(a) Calculate Q value of the neutron capture reaction. Use both the rest energy method and the binding energy method. Appropriate nuclear data are provided in Appendix A.

(b) Determine the kinetic energy E_{\mathrm{K}}^{\mathrm{n}} \text { of the } \alpha \text { particle and the }{ }_3^7 \mathrm{Li}^{3+} ion for both branches of the neutron capture reaction.

(c) Determine whether or not it is possible for the α particles produced in the thermal neutron capture reaction { }_5^{10} \mathrm{~B}(\mathrm{n}, \alpha){ }_3^7 \mathrm{Li} \text { to produce }{ }_7^{13} \mathrm{~N} in the following reaction: { }_5^{10} \mathrm{~B}(\alpha, \mathrm{n}){ }_7^{13} \mathrm{~N}.

Screenshot 2023-06-28 163832
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) As shown in Fig. 9.6, boron-10 exposed to thermal neutrons may undergo a neutron capture nuclear reaction that produces two reaction products ({ }_3^7 \mathrm{Li} ion and α particle) with two possible branches: \left({ }_3^7 \mathrm{Li}, \alpha\right) \text { and }\left({ }_3^7 \mathrm{Li}^*, \alpha\right) with a branching ratio of 6 % vs. 94 %. The lithium-7 excited state de-excites to ground state with emission of a γ ray of energy E_γ = 0.48 MeV.

Q value for both branches of the \left({ }_5^{10} \mathrm{~B}, \mathrm{n}\right) neutron capture reaction is calculated as follows [(T5.7) and (T5.8)]

(1) Rest energy method:

\begin{aligned} Q & =\sum_{i, \text { before }} M_i c^2-\sum_{i, \text { after }} M_i c^2=\left[M\left({ }_5^{10} \mathrm{~B}\right) c^2+m_{\mathrm{n}} c^2\right]-\left[m_\alpha c^2+M\left({ }_3^7 \mathrm{Li}\right) c^2\right] \\ & =[9324.4362 \mathrm{~MeV}+939.5654 \mathrm{~MeV}]-[3727.3791 \mathrm{~MeV}+6533.8329 \mathrm{~MeV}] \\ & =10264.0016 \mathrm{~MeV}-10261.2120 \mathrm{~MeV}=2.79 \mathrm{~MeV} .\quad (9.110) \end{aligned}

(2) Binding energy method:

\begin{aligned} Q & =\sum_{i, \text { after }} E_{\mathrm{B}}(i)-\sum_{i, \text { before }} E_{\mathrm{B}}(i)=\left[E_{\mathrm{B}}\left({ }_3^7 \mathrm{Li}\right)+E_{\mathrm{B}}\left({ }_2^4 \mathrm{He}\right)\right]-\left[E_{\mathrm{B}}\left({ }_5^{10} \mathrm{~B}\right)+0\right] \\ & =[39.2446 \mathrm{~MeV}+28.2957 \mathrm{~MeV}]-[64.7507 \mathrm{~MeV}+0] \\ & =2.79 \mathrm{~MeV}\quad (9.111) \end{aligned}

Q value for both branches of the \left({ }_5^{10} \mathrm{~B}, \mathrm{n}\right) neutron capture reaction is 2.79 MeV; however, in the first branch \left({ }_3^7 \mathrm{Li}, \alpha\right) the two ions released share the full Q value in energy while in the second branch, which also produces a 0.48 MeV γ ray in the de-excitation process of { }_3^7 \mathrm{Li}^* \text {, } the two ions share the remaining energy Q − E_γ = 2.79 MeV − 0.48 MeV = 2.31 MeV.

(b) Kinetic energy of reaction products in the neutron capture reaction is determined from the known Q value for the reaction calculated in (a).

(1) Kinetic energies of the α particle and the { }_3^7 \mathrm{Li}{ }^{3+} ion produced in the \left({ }_3^7 \mathrm{Li}, \alpha\right) branch of the boron-10 neutron capture reaction are calculated as follows. The two reaction products share the Q value energy in the inverse proportion of their masses, since the momenta of the two reaction products \text { ( } \alpha particle and { }_3^7 \mathrm{Li} \text { ion) } are equal in magnitude but opposite in direction to satisfy the conservation of momentum principle in thermal neutron capture reaction. Note: Total momentum before reaction is zero, so total momentum after capture reaction must also be zero.
Q value can be expressed as follows

Q=E_{\mathrm{K}}^{\mathrm{Li}}+E_{\mathrm{K}}^\alpha=\frac{p_{\mathrm{Li}}^2}{2 M\left({ }_3^7 \mathrm{Li}\right)}+\frac{p_\alpha^2}{2 m_\alpha}=\frac{p^2}{2}\left[\frac{1}{M\left({ }_3^7 \mathrm{Li}\right)}+\frac{1}{m_\alpha}\right]=\frac{p^2}{2} \frac{m_\alpha+M\left({ }_3^7 \mathrm{Li}\right)}{M\left({ }_3^7 \mathrm{Li}\right) m_\alpha},           (9.112)

where E_{\mathrm{K}}^{\mathrm{Li}} \text { and } E_{\mathrm{K}}^\alpha are kinetic energy of the { }_3^7 \mathrm{Li} ion and α particle, respectively, and p stands for \left|\mathbf{p}_{\mathrm{Li}}\right|=p_{\mathrm{Li}} \text { as well as for }\left|\mathbf{p}_\alpha\right|=p_\alpha, since the magnitudes of the two momentum vectors are equal.

Solving (9.112) for p^2 allows us to express the kinetic energies E_{\mathrm{K}}^{\mathrm{Li}} \text { and } E_{\mathrm{K}}^\alpha \text {, } respectively, as follows

\begin{aligned} E_{\mathrm{K}}^{\mathrm{Li}} & =\frac{p^2}{2 M\left({ }_3^7 \mathrm{Li}\right)}=Q \frac{m_\alpha c^2}{M\left({ }_3^7 \mathrm{Li}\right) c^2+m_\alpha c^2} \\ & =(2.79 \mathrm{~MeV}) \times \frac{3727.3791}{6533.8330+3727.3791}=(2.79 \mathrm{~MeV}) \times 0.363=1.01 \mathrm{~MeV}\quad (9.113) \end{aligned}

and

\begin{aligned} E_{\mathrm{K}}^\alpha & =\frac{p^2}{2 m_\alpha c^2}=Q \frac{M\left({ }_3^7 \mathrm{Li}\right)}{M\left({ }_3^7 \mathrm{Li}\right) c^2+m_\alpha c^2} \\ & =(2.79 \mathrm{~MeV}) \times \frac{6533.8330}{6533.8330+3727.3791}=(2.79 \mathrm{~MeV}) \times 0.637=1.78 \mathrm{~MeV} .\quad (9.114) \end{aligned}

(2) Kinetic energies of the α particle and the { }_3^7 \mathrm{Li}^{3+} excited ion produced in the \left({ }_3^7 \mathrm{Li}^*, \alpha\right) branch of the boron-10 neutron capture reaction are calculated as follows. The excited nucleus { }_3^7 \mathrm{Li}^* attains the ground state of { }_3^7 \mathrm{Li} through emission of a γ ray of energy E_\gamma=0.48 \mathrm{~MeV} . Thus, the energy difference Q-E_\gamma = 2.31 MeV rather than the full energy of the Q value is available for sharing between the { }_3^7 \mathrm{Li} ion and α particle and the energy is again shared in the inverse proportion of the masses of the two ions. For this branch of the boron-10 neutron capture reaction kinetic energies E_{\mathrm{K}}^{\mathrm{Li}} \text { and } E_{\mathrm{K}}^\alpha, respectively, are given as follows

\begin{aligned} E_{\mathrm{K}}^{\mathrm{Li}} & =\frac{p^2}{2 M\left({ }_3^7 \mathrm{Li}\right)}=\left(Q-E_\gamma\right) \frac{m_\alpha c^2}{M\left({ }_3^7 \mathrm{Li}\right) c^2+m_\alpha c^2} \\ & =(2.31 \mathrm{~MeV}) \times \frac{3727.3791}{6533.8330+3727.3791}=(2.31 \mathrm{~MeV}) \times 0.363=0.84 \mathrm{~MeV}\quad (9.115) \end{aligned}

and

\begin{aligned} E_{\mathrm{K}}^\alpha & =\frac{p^2}{2 m_\alpha c^2}=\left(Q-E_\gamma\right) \frac{M\left({ }_3^7 \mathrm{Li}\right)}{M\left({ }_3^7 \mathrm{Li}\right) c^2+m_\alpha c^2} \\ & =(2.31 \mathrm{~MeV}) \times \frac{6533.8330}{6533.8330+3727.3791}=(2.31 \mathrm{~MeV}) \times 0.637=1.47 \mathrm{~MeV} .\quad (9.116) \end{aligned}

(c) Neutron capture reaction { }_5^{10} \mathrm{~B}(\mathrm{n}, \alpha){ }_3^7 \mathrm{Li} proceeds in two branches, the 6 % branch producing 1.78 MeV α particles and the 94 % branch producing 1.47 MeV α particles [see (b)]. To establish whether or not reaction { }_5^{10} \mathrm{~B}(\alpha, \mathrm{n}){ }_7^{13} \mathrm{~N} can run with these α particles we first evaluate the reaction Q value using the rest energy method and the binding energy method as follows

\begin{aligned} Q & =\sum_{i, \text { before }} M_i c^2-\sum_{i, \text { after }} M_i c^2=\left[M\left({ }_5^{10} \mathrm{~B}\right) c^2+m_\alpha c^2\right]-\left[m_{\mathrm{n}} c^2+M\left({ }_7^{13} \mathrm{~N}\right) c^2\right] \\ & =[9324.4362 \mathrm{~MeV}+3727.3791 \mathrm{~MeV}]-[939.5654 \mathrm{~MeV}+1211.1910 \mathrm{~MeV}] \\ & =13051.8153 \mathrm{~MeV}-13050.7564 \mathrm{~MeV}=1.059 \mathrm{~MeV},\quad (9.117) \end{aligned}\\ \begin{aligned} Q & =\sum_{i, \text { after }} E_{\mathrm{B}}(i)-\sum_{i, \text { before }} E_{\mathrm{B}}(i)=\left[0+E_{\mathrm{B}}\left({ }_7^{13} \mathrm{~N}\right)\right]-\left[E_{\mathrm{B}}\left({ }_5^{10} \mathrm{~B}\right)+E_{\mathrm{B}}\left({ }_2^4 \mathrm{He}\right)\right] \\ & =[0+94.1053 \mathrm{~MeV}]-[64.7507 \mathrm{~MeV}+28.2957 \mathrm{~MeV}]=1.059 \mathrm{~MeV} .\quad (9.118) \end{aligned}

Since Q value of the reaction { }_5^{10} \mathrm{~B}(\alpha, \mathrm{n}){ }_7^{13} \mathrm{~N} is positive, the reaction is exothermic and can proceed without any threshold energy restrictions.

Related Answered Questions