Holooly Plus Logo

Question 15.11: Calculate the pH and the concentrations of all species prese......

Calculate the pH and the concentrations of all species present (H_{2}CO_{3},  HCO_{3}  ^{-}  ,  CO_{3}  ^{2 -}  ,  H_{3}O^{+},  and  OH^{-}) in a 0.020 M carbonic acid solution.

STRATEGY

Use the eight-step procedure summarized in Figure 15.7.

IDENTIFY
Known Unknown
Concentration of H_{2}CO_{3} (0.020 M) pH
K_{a1}=4.3\times 10^{-7},  K_{a2}=5.6\times 10^{-11} (Table 15.3) Equilibrium concentrations
Table 15.3 Stepwise Dissociation Constants for Polyprotic Acids at 25 °C
Name Formula K_{a1} K_{a2} K_{a3}
Carbonic acid H_{2}CO_{3} 4.3 \times 10^{-7} 5.6 \times 10^{-11} 4.8 \times 10^{-13}
Hydrogen sulfidea^{a} H_{2}S 1.0 \times 10^{-7} \sim 10^{-19}
Oxalic acid H_{2}C_{2}O_{4} 5.9 \times 10^{-2} 6.4 \times 10^{-5}
Phosphoric acid H_{3}PO_{4} 7.5 \times 10^{-3} 6.2 \times 10^{-8}
Sulfuric acid H_{2}SO_{4} Very large 1.2 \times 10^{-2}
Sulfurous acid H_{2}SO_{3} 1.5 \times 10^{-2} 6.3 \times 10^{-8}
^{a}Because of its very small size, K_{a2} for H_{2}S is difficult to measure and its value is uncertain.
Fig 15.7
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Steps 1–3. The species present initially are H_{2}CO_{3} (acid) and H_{2}O (acid or base). Because K_{a1}  >>  K_{w}, the principal reaction is the dissociation of H_{2}CO_{3}.

Step 4.

Table 1

Step 5. Substituting the equilibrium concentrations into the equilibrium equation for the principal reaction gives

K_{a1}=4.3\times 10^{-7}=\frac{[H_{3}O^{+}][HCO_{3}  ^{-}]}{[H_{2}CO_{3}]}=\frac{(x)(x)}{(0.020-x)}

Assuming that (0.020 – x) ≈ 0.020,

x^{2}=(4.3\times 10^{-7})(0.020)

x  =  9.3 \times 10^{-5}                Approximation (0.020 – x) ≈ 0.020 is justified.

Step 6. The big concentrations are

[H_{3}O^{+}]=[HCO_{3}  ^{-}]=  x  =  9.3\times 10^{-5}  M

[H_{2}CO_{3}] = 0.020 – x = 0.020 – 0.000 093 = 0.020 M

Step 7. The small concentrations (CO_{3}  ^{2-}  and  OH^{-}) are obtained from the subsidiary equilibria— (1) dissociation of HCO_{3}  ^{-} and (2) dissociation of water—and from the big concentrations already determined:

(1) HCO_{3}  ^{-}(aq)+H_{2}O(l)\xrightleftharpoons{}H_{3}O^{+}(aq)+CO_{3}  ^{2-}(aq)

K_{a2}=5.6\times 10^{-11}=\frac{[H_{3}O^{+}][CO_{3}  ^{2-}]}{[HCO_{3}  ^{-}]}=\frac{(9.3\times 10^{-5})[CO_{3}  ^{2-}]}{(9.3\times 10^{-5})}

 

[CO_{3}  ^{2-}]=K_{a2}=5.6\times 10^{-11}  M

(In general, for a solution of a weak diprotic acid that has a very small value of K_{a2},  [A^{2-}]=K_{a2}.)

(2) [OH^{-}]=\frac{K_{w}}{[H_{3}O^{+}]}=\frac{1.0 \times 10^{-14}}{9.3\times 10^{-5}}=1.1\times 10^{-10}  M

The second dissociation of H_{2}CO_{3} produces a negligible amount of H_{3}O^{+} compared with the H_{3}O^{+} obtained from the first dissociation. Of the 9.3\times 10^{-5}  M  of  HCO_{3}  ^{-} produced by the first dissociation, only 5.6\times 10^{-11}  M dissociates to form H_{3}O^{+}  and  CO_{3}  ^{2-}.

Step 8. pH = -log [H_{3}O^{+}] = – log (9.3\times 10^{-5}) = 4.03

Table 1

Principal reaction H_{2}CO_{3}(aq) + H_{2}O(l) \xrightleftharpoons{} H_{3}O^{+}(aq) + HCO_{3}  ^{-}(aq)
Initial concentration (M) 0.020 ∼ 0 0
Change (M) -x +x +x
Equilibrium concentration (M) 0.020 – x x x

Related Answered Questions

Question: 15.10

Verified Answer:

Step 1. The species present initially are \...
Question: 15.2

Verified Answer:

The second reactant is HF, and the first product i...
Question: 15.9

Verified Answer:

We can calculate the value of x from the pH: [late...
Question: 15.6

Verified Answer:

[H_{3}O^{+}]=\frac{K_{w}}{[OH^{-}]}=\frac{1...