Holooly Plus Logo

Question 3.6: Calculating the Mass Percent of Each Element in a Compound f......

Calculating the Mass Percent of Each Element in a Compound from the Formula

Problem The effectiveness of fertilizers depends on their nitrogen content. Ammonium nitrate is a common fertilizer. What is the mass percent of each element in ammonium nitrate?

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Plan We know the relative amounts (mol) of the elements from the formula, and we have to find the mass % of each element. We multiply the amount of each element by its molar mass to find its mass. Dividing each element’s mass by the mass of 1 mol of ammonium nitrate gives the mass fraction of that element, and multiplying the mass fraction by 100 gives the mass %. The calculation steps for any element (X) are shown in the road map (Fig 3.6).

Solution The formula is NH_4NO_3 (see Table 2.5). In 1 mol of NH_4NO_3, there are 2 mol of N, 4 mol of H, and 3 mol of O.

Converting amount (mol) of N to mass (g): We have 2 mol of N in 1 mol of NH_4NO_3, so

                 \text{Mass (g) of N}  =  2  {\text{mol N}}  \times  \frac{14.01  g  N}{1  \text{mol N}}  =  28.02  g  N

Calculating the mass of 1 mol of NH_4NO_3:

            ℳ  =  (2  ×  ℳ  \text{of}  N)  +  (4  ×  ℳ \text{of}  H)  +  (3  ×  ℳ \text{of}  O)
                  =  (2  ×  14.01  \text{g/mol N})  +  (4  ×  1.008  \text{g/mol H})  +  (3  ×  16.00  \text{g/mol O})
                  =  80.05  \text{g/mol}  NH_4NO_3

Finding the mass fraction of N in NH_4NO_3:

             \text{Mass fraction of N}  =  \frac{\text{total mass of N}}{\text{mass of 1 mol}  NH_4NO_3}  =  \frac{28.02  g  N}{80.05  g  NH_4NO_3}  =  0.3500

Changing to mass %:

             \text{Mass \% of N}  =  \text{mass fraction of}  N  ×  100  =  0.3500  ×  100
             =  35.00  \text{mass \% N}

Combining the steps for each of the other elements in NH_4NO_3:

           \text{Mass \% of H}  =  \frac{\text{mol H × }ℳ\text{ of H}}{\text{mass of 1 mol}  NH_4NO_3}  \times  \frac{4  \cancel{\text{mol H}}  \times  \frac{1.008  g  H}{1  \cancel{\text{mol H}}}}{80.05  g  NH_4NO_3}  \times  100
                  =  5.037  \text{mass \% H}
           \text{Mass \% of O}  =  \frac{\text{mol O × }ℳ\text{ of O}}{\text{mass of 1 mol}  NH_4NO_3}  \times  \frac{3  \cancel{\text{mol H}}  \times  \frac{16.00  g  O}{1  \cancel{\text{mol O}}}}{80.05  g  NH_4NO_3}  \times  100
                  =  59.96  \text{mass \% O}

Check The answers make sense. The mass % of O is greater than that of N because there are more moles of O in the compound and the molar mass of O is greater. The mass % of H is small because its molar mass is small. The sum of the mass percents is 100.00%.

Comment From here on, you should be able to determine the molar mass of a compound, so that calculation will no longer be shown.

Table 2.5 Common Polyatomic Ions^*

Formula Name
Cations
NH_4^+ ammonium
H_3O^+ hydronium
Anions
CH_3COO^- (or C_2H_3O_2^-) acetate
CN^- cyanide
OH^- hydroxide
ClO^- hypochlorite
ClO_2^- chlorite
ClO_3^- chlorate
ClO_4^- perchlorate
NO_2^- nitrite
NO_3^- nitrate
MnO_4^- permanganate
CO_3^{2-} carbonate
HCO_3^{-} hydrogen carbonate (or bicarbonate)
CrO_4^{2-} chromate
Cr_2O_7^{2-} dichromate
O_2^{2-} peroxide
PO_4^{3-} phosphate
HPO_4^{2-} hydrogen phosphate
H_2PO_4^{-} dihydrogen phosphate
SO_3^{2-} sulfite
SO_4^{2-} sulfate
HSO_4^{-} hydrogen sulfate (or bisulfate)

^*Boldface ions are the most common.

f3.6

Related Answered Questions