Holooly Plus Logo

Question 3.11: Determining a Molecular Formula from Combustion Analysis Pro......

Determining a Molecular Formula from Combustion Analysis

Problem Vitamin C ( = 176.12 g/mol) is a compound of C, H, and O found in many natural sources, especially citrus fruits. When a 1.000-g sample of vitamin C is burned in a combustion apparatus, the following data are obtained:

                \text{Mass of}  CO_2  \text{absorber after combustion = 85.35 g}
                \text{Mass of}  CO_2  \text{absorber before combustion = 83.85 g}
                \text{Mass of}  H_2O  \text{absorber after combustion = 37.96 g}
                \text{Mass of}  H_2O  \text{absorber before combustion = 37.55 g}

What is the molecular formula of vitamin C?

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Plan We find the masses of CO_2 and H_2O by subtracting the mass of each absorber before the combustion from its mass after combustion. From the mass of CO_2, we use Equation 3.7 to find the mass of C. Similarly, we find the mass of H from the mass of H_2O. The mass of vitamin C (1.000 g) minus the sum of the masses of C and H gives the mass of O, the third element present. Then, we proceed as in Sample Problem 3.10: calculate the amount (mol) of each element using its molar mass, construct the empirical formula, determine the whole-number multiple from the given molar mass, and construct the molecular formula.

   \text{Mass of element = mass of compound} \times  \frac{\text{mass of element in 1 mol of compound}}{\text{mass of 1 mol of compound}}            (3.7)

Solution Finding the masses of combustion products:

             \text{Mass (g) of }CO_2  =  \text{mass of }CO_2 \text{ absorber after − mass before}
                         =  85.35  g  −  83.85  g  =  1.50  g  CO_2
             \text{Mass (g) of }H_2O  =  \text{mass of }H_2O \text{ absorber after − mass before}
                         =  37.96  g  −  37.55  g  =  0.41  g  H_2O

Calculating masses (g) of C and H using Equation 3.7:

   \text{Mass of element = mass of compound} \times  \frac{\text{mass of element in 1 mol of compound}}{\text{mass of 1 mol of compound}}
     \text{Mass (g) of C = mass of}  CO_2  \times  \frac{\text{1 mol C × }ℳ \text{of C}}{\text{mass of 1 mol }CO_2}  =  1.50  \cancel{g  CO_2}  \times  \frac{12.01  g  C}{44.01  \cancel{g  CO_2}}
                =  0.409  g  C
     \text{Mass (g) of H = mass of}  H_2O  \times  \frac{\text{2 mol H × }ℳ \text{of H}}{\text{mass of 1 mol }H_2O}  =  0.41  \cancel{g  H_2O}  \times  \frac{2.016  g  H}{18.02  \cancel{g  H_2O}}
                =  0.046  g  H

Calculating mass (g) of O:

   \text{Mass (g) of O = mass of vitamin C sample − (mass of C + mass of H)}
                 =  1.000  g  −  (0.409  g  +  0.046  g)  =  0.545  g  O

Finding the amounts (mol) of elements: Dividing the mass (g) of each element by its molar mass gives 0.0341 mol of C, 0.046 mol of H, and 0.0341 mol of O.

Constructing the preliminary formula: C_{0.0341}H_{0.046}O_{0.0341}

Determining the empirical formula: Dividing through by the smallest subscript gives

              C_{\frac{0.0341}{0.0341}}H_{\frac{0.046}{0.0341}}O_{\frac{0.0341}{0.0341}}  =  C_{1.00}H_{1.3}O_{1.00}

We find that 3 is the smallest integer that makes all subscripts into integers:

               C_{(1.00×3)}H_{(1.3×3)}O_{(1.00×3)}  =  C_{3.00}H_{3.9}O_{3.00}  ≈  C_3H_4O_3

Determining the molecular formula:

       \text{Whole-number multiple}  =  \frac{ℳ\text{ of vitamin C}}{ℳ\text{ of empirical formula}}  =  \frac{176.12  \cancel{\text{g/mol}}}{88.06  \cancel{\text{g/mol}}}  =  2.000  =  2
               C_{(3×2)}H_{(4×2)}O_{(3×2)}  =  C_6H_8O_6

Check The element masses seem correct: carbon makes up slightly more than 0.25 of the mass of CO_2 (12 g/44 g > 0.25), as do the masses in the problem (0.409 g/1.50 g > 0.25). Hydrogen makes up slightly more than 0.10 of the mass of H_2O (2 g/18 g > 0.10), as do the masses in the problem (0.046 g/0.41 g > 0.10). The molecular formula has the same ratio of subscripts (6/8/6) as the empirical formula (3/4/3) and the preliminary formula (0.0341/0.046/0.0341), and it gives the known molar mass:

                (6  ×  ℳ  \text{of}  C)  +  (8  ×  ℳ  \text{of}  H)  +  (6  ×  ℳ  \text{of}  O)  =  ℳ  \text{of vitamin C}
             (6  ×  12.01  \text{g/mol})  +  (8  ×  1.008  \text{g/mol})  +  (6  ×  16.00  \text{g/mol})  =  176.12  \text{g/mol}

Comment The subscript we calculated for H was 3.9, which we rounded to 4. But, if we had strung the calculation steps together, we would have obtained 4.0:

         \text{Subscript of H }=  0.41  g  H_2O  \times  \frac{2.016  g  H}{18.02  g  H_2O}  \times  \frac{1  \text{mol}  H}{1.008  g  H}  \times  \frac{1}{0.0341  \text{mol}}  \times  3  =  4.0

Related Answered Questions