Holooly Plus Logo

Question 42.3: CASE STUDY Other Hydrogen Lines Use the information in Figur......

CASE STUDY Other Hydrogen Lines

Use the information in Figure 42.7 to find the wavelength of the first (lowest energy) line of the Lyman, Paschen, and Brackett series. In what part of the electromagnetic spectrum are these lines found?

42.7
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

INTERPRET and ANTICIPATE
Find the wavelength of the emitted photons from the energy differences shown in Figure 42.7. The greater the energy difference, the greater the energy of the photon. High-energy photons have short wavelengths. Of the three series, the Lyman transition has the greatest energy difference, so we expect its photon will have the shortest wavelength. Check the results by using the empirical fit (Eq. 42.3).

SOLVE
Find the energy difference for each of the lines. The subscripts L, P, and B refer to the first line of the Lyman, Paschen and Brackett series, respectively.

\begin{aligned}& \Delta E_{ L }=E_2-E_1=-3.40  eV -(-13.6  eV )=10.2  eV \\& \Delta E_{ P }=E_4-E_3=-0.850  eV -(-1.51  eV )=0.66  eV \\& \Delta E_{ B }=E_5-E_4=-0.544  eV -(-0.850  eV )=0.306  eV\end{aligned}

In each case, the energy lost by the atom equals the photon energy. Use E = hc/λ (Eq. 40.17) to find the photon’s wavelength.

\begin{aligned}& \lambda=\frac{h c}{E}=\frac{\left(4.1356 \times 10^{-15} eV \cdot s \right)\left(2.998 \times 10^8 m / s \right)}{E}=\frac{1.240 \times 10^{-6} eV \cdot m }{E} \\& \lambda_{ L }=\frac{1.240 \times 10^3 eV \cdot nm }{10.2  eV }=122   nm \\& \lambda_{ P }=\frac{1.241  eV \cdot \mu m }{0.66  eV }=1.88  \mu m \\& \lambda_{ B }=\frac{1.241  eV \cdot \mu m }{0.306  eV }=4.06  \mu m \end{aligned}

Use Figure 34.11 and Table 34.2 (page 1101) to identify the part of the electromagnetic spectrum in which each line is found.

\begin{aligned}& \lambda_{ L }=1.22 \times 10^{-7} m \text { in the UV } \\ & \lambda_{ P }=1.88 \times 10^{-6} m \text { in the IR } \\& \lambda_{ B }=4.05 \times 10^{-6} m \text { in the IR }\end{aligned}

CHECK AND THINK
As expected, the Lyman line has the shortest wavelength. We can check our results using Equation 42.3.

\begin{aligned}& \frac{1}{\lambda}=R\left(\frac{1}{m^2}-\frac{1}{n^2}\right) \quad \quad (42.3)\\& \frac{1}{\lambda_{ L }}=R\left(\frac{1}{1^2}-\frac{1}{2^2}\right)=\frac{3 R}{4} \\& \lambda_{ L }=\frac{4}{3 R}=\frac{4}{3\left(1.097 \times 10^7 m ^{-1}\right)}=122   nm \quad \checkmark\\& \frac{1}{\lambda_{ P }}=R\left(\frac{1}{3^2}-\frac{1}{4^2}\right)=\frac{7 R}{144} \\& \lambda_{ P }=\frac{144}{7 R}=1880  nm \quad \checkmark \\& \frac{1}{\lambda_{ B }}=R\left(\frac{1}{4^2}-\frac{1}{5^2}\right)=\frac{9 R}{400} \\& \lambda_{ B }=\frac{400}{9 R}=4050  nm \quad \checkmark\end{aligned}
TABLE 34.2 The electromagnetic spectrum broken into convenient bands. Values are approximate.
Name of band Wavelength
λ (m)
Frequency
f (Hz)
Radio >10^{-2} <10^{11}
Microwave 10^{-4}-1 10^9-10^{13}
Infrared (IR) 10^{-6}-10^{-4} 10^{12}-10^{14}
Visible light 10^{-7}-10^{-6} 10^{14}-10^{15}
Ultraviolet (UV) 10^{-9}-10^{-7} 10^{15}-10^{18}
X-rays 10^{-12}-10^{-9} 10^{17}-10^{20}
Gamma rays <10^{-10} >10^{19}
34.11

Related Answered Questions

Question: 42.9

Verified Answer:

Interpret and Anticipate According to the periodic...