Question 4.4: Compare between the thrust-specific fuel consumption (TSFC) ......

Compare between the thrust-specific fuel consumption (TSFC) of a ramjet engine and an afterburning turbojet engine, when both have flight Mach number of 2 at 45,000 ft altitude, where T_{\text{a}} = −69.7°C,  P_a= 14.75 kPa.
Both engines have the same maximum temperature of 2225 K and same exhaust speed.
For the turbojet engine the compressor pressure ratio is 8 and the turbine outlet temperature is 700 K.
Conventional hydrocarbon fuel is used with Q_{\text{R}} = 43,000 kJ/kg. For simplicity, assume constant properties; or γ = 1.4, C_{\text{P}} = 1.005 kJ/kg/k, no aerodynamic loss in both engines, all the processes are ideal, and no pressure losses in either the combustion chamber or afterburner. Assume also complete expansion of the gases in the nozzles to the ambient pressure.
Next, for the turbojet engine, what will be the ratio of the power consumed in the compressor to that available in the turbine?

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

1. Ramjet engine
The gases in the nozzle expand to the ambient condition. With

\begin{matrix} T_{\text{a}}&=&-69.7+273.15&=&203.5 \text{ K} \\ P_{\text{a}}&=&14.75 \text{ kPa and }M&=&2 \end{matrix}

The flight speed is u_{\text{a}}=M\sqrt{\gamma RT_{\text{a}}}=2 \sqrt{(1.4)(287)(203.5)}

\begin{matrix} \therefore u_{\text{a}}&=& 571.8 \text{ m/s} \\ \frac{T_{0\text{a}}}{T_{\text{a}}} &=&1+\frac{\gamma-1}{2}M^2=1+0.2 \times 4=1.8 \\ \therefore T_{0\text{a}}&=&366.3 \text{ K} \\ \frac{P_{0\text{a}}}{P_{\text{a}}}&=&\left(1+\frac{\gamma-1}{2} M^2\right)^{\gamma/(\gamma-1)}=(1.8)^{3.5}=7.824 \\ P_{0\text{a}}&=&115 \text{ kPa} \end{matrix}

Diffuser: For ideal diffuser, then

T_{02}=T_{0\text{a}}=366.3 \text{ K} \\ P_{0\text{a}}=P_{02}=P_{04}=115 \text{ kPa}

Combustion chamber: The fuel-to-air ratio is

\begin{matrix} f&=&\frac{C_{\text{P}}(T_{04}-T_{0a})}{Q_{\text{R}}-C_{\text{P}}T_{04}} \\ f&=& 0.04582 \end{matrix}

Nozzle: Since all the processes are ideal, then the velocity ratio is obtained from Equation 3.18b (\therefore u_{\text{e}}=u\sqrt{\frac{T_{04}}{T_{0\text{a}}}}\equiv u\sqrt{\frac{T_{04}}{T_{02}} }) as

\frac{u_{\text{e}}}{u_{\text{a}}} =\sqrt{\frac{T_{04}}{T_{0\text{a}}} }=\sqrt{\frac{2225}{366.3} }=2.465 \\ \therefore u_{\text{e}}=1410 \text{ m/s}

The specific thrust is

\begin{matrix} \therefore \frac{T}{\dot{m}_{\text{a}}} &=& u_{\text{a}} \left[(1+f)\frac{u_{\text{e}}}{u_{\text{a}}}-1 \right]&=&572[1.04582 \times 2.465-1] \\ \frac{T}{\dot{m}_{\text{a}}}&=&902.6\frac{\text{N}}{\text{(kg/s)}} \\ \text{TSFC}&=&\frac{f}{(T/\dot{m}_{\text{a}})}&=&0.1828\frac{\text{kg}}{\text{N.h}} \end{matrix}

2. Turbojet
An ideal cycle is assumed and the nozzle is unchoked. The outlet conditions of the diffuser are the same as in the ramjet case,

\therefore T_{02}=366.3 \text{ K} \quad \text{ and }\quad P_{02}=115 \text{ kPa}

Moreover, there is no pressure drop in the combustion chamber, thus P_{04}=P_{03}

There is no pressure drop in the afterburner also, thus P_{05}=P_{06\text{A}} .
Nozzle: Since the nozzle is unchoked, and the exhaust speed is the same as in the case of ramjet, then

\begin{matrix} T_{06\text{A}}&=&T_7+\frac{V^2_7}{2C_{\text{P}}} \\ T_7&=&T_{06\text{A}}-\frac{V^2_7}{2C_{\text{P}}}=2225-\frac{(1410)^2}{2 \times 1005} \\ T_7&=&1236 \text{ K} \\ \frac{P_{06\text{A}}}{P_7} \equiv \frac{P_{06\text{A}}}{P_{\text{a}}} &=&\left(\frac{T_{06\text{A}}}{T_7} \right)^{\gamma/(\gamma-1)}=\left(\frac{2225}{1236} \right)^{1.4/0.4}=7.829 \\ P_{06\text{A}}&=&P_{05}=115.5 \text{ kPa} \end{matrix}

Compressor

\begin{matrix} \frac{P_{03}}{P_{02}}&=& \pi_{\text{c}}&=&8 \\ \therefore P_{03}&=&920 \text{ kPa} &\equiv& P_{04} \\ \frac{T_{03}}{T_{02}}&=&(8)^{(\gamma-1)/\gamma}&=&8^{(0.4/1.4)}&=&8^{0.286}=1.811 \\ T_{03}&=&663 \text{ K} \end{matrix}

Turbine

\begin{matrix} \frac{T_{04}}{T_{05}} &=&\left(\frac{P_{04}}{P_{05}} \right) ^{(\gamma-1)/\gamma}&=&\left(\frac{P_{03}}{P_{06\text{A}}} \right) ^{0.4/1.4} \\ &=&\left(\frac{920}{115.5} \right) ^{0.286}&=&1.8103 \\ \therefore T_{05}&=&700 \text{ K} \\ \therefore T_{04}&=&1267.2 \text{ K} \end{matrix}

Combustion chamber

\begin{matrix}f&=&\frac{C_{\text{P}}(T_{04}-T_{03})}{Q_{\text{R}}-C_{\text{P}}T_{04}} &=&\frac{1.005 \times (1267.2-663)}{43,000-1.005 \times 1267.2} \\ f&=&0.0146 \end{matrix}

To determine the fuel-to-air ratio of afterburner f_{\text{ab}} , consider the energy balance of afterburner.

From Equation 4.9 (f_{\text{ab}}=\frac{(1+f)(Cp_{6\text{A}}T_{06\text{A}}-CP_5T_{05})}{Q_{\text{R}}-Cp_{6\text{A}}T_{06\text{A}}} ), the afterburner fuel-to-air ratio is

\begin{matrix} f_{\text{ab}} &=& \frac{(1+f)c_{\text{P}}(T_{06}-T_{05})}{Q_{\text{R}}-c_{\text{P}}T_{06}}&=&\frac{(1.0171)(1.005)(2225-700)}{43,000-1.005 \times 2225} \\ f_{\text{ab}}&=& 0.03815 \end{matrix}

The total fuel-to-air ratio of the turbojet engine is f_{\text{total}}=f+f_{\text{ab}}

\begin{matrix} f_{\text{total}} &=&0.05275 \\ \frac{T}{\dot{m}_{\text{a}}}&=&(1+f_{\text{tot}})u_{\text{e}}-u &=&1.05275 \times 1410-572 \\ \frac{T}{\dot{m}_{\text{a}}} &=&912.4\frac{\text{N}}{\text{(kg/s)}} \\ \text{TSFC}&=&0.20813\frac{\text{kg}}{\text{N.h}} \end{matrix}

SUMMARY

\begin{matrix} && \text{Ramjet} & \text{Turbojet} \\ T/\dot{m}_{\text{a}} (\text{N.s/kg}) && 902.6 & 912.4 \\ \text{TSFC}\left(\frac{\text{kg}}{\text{N.h}} \right) && 0.1828 &0.20813 \end{matrix}

The afterburning turbojet engine produces more thrust at the expense of more fuel consumption compared to the ramjet.
The ratio between the power consumed in driving the compressor out of the total turbine power [i.e., (λ)] is to be calculated from the relation

Cp(T_{03}-T_{02})=\lambda Cp(T_{04}-T_{05}) \\ \lambda=\frac{663-336}{1267.2-700}=0.57652

4.4

Related Answered Questions