Question 18.12: Consider a five storey building (Example 18.1) (see Fig. 18.......

Consider a five storey building (Example 18.1) (see Fig. 18.32) whose properties are given. Calculate effective modal mass and height.

fig 18.32
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Using the MATHEMATICA package, the normalized eigenvector is given as

                   [\phi]=\left[\begin{array}{ccccc}-0.1585 & -0.3602 & -0.4472 & 0.3804 & 0.0193 \\-0.2982 & -0.3981 & -0 & -0.4976 & -0.0711 \\-0.4023 & -0.0797 & 0.4472 & 0.2703 & 0.2423 \\-0.4586 & 0.31 & 0 & 0.1441 & -0.8202 \\-0.4877 & 0.5610 & -0.4472 & -0.2204 & 0.446\end{array}\right]

The numerical analysis value is

                   < F >=<2   2   2   1   1>

The modal contribution of mass (see Fig. 18.33) is

              \phi_1^{ T } F=\Gamma_1=-2.6644

                  \Gamma_2=-0.8051

                  \Gamma_3=-0.4472

                  \Gamma_4=0.23

                  \Gamma_5=0.0068

                   [F] = [m][φ][Γ]

The effective modal mass and modal height are shown in Fig. 18.34.

      The ground acceleration \ddot{u}_g~(t) is defined by its numerical value as time instant equally spaced at ∆t. This time step is chosen small enough to define \ddot{u}_g~(t) and to determine accurately the response of the SDOF system:

                  \text { Base shear }=m\left(7.0926 A_1(t)+0.6471 A_2(t)+0.2 A_3(t)\right.

                                             \left.+0.0528 A_4(t)+0.0003 A_5(t)\right)

                  \text { Base moment }=m h\left(7.0927 \times 3.079 A_1(t)+0.6471 \times(-1.563) A_2(t)\right.

                                                   +0.2 A_3(t)+0.0528 \times(-0.587) A_4(t)

                                                  \left.+0.0003 \times 7.67 A_5(t)\right)

fig 18.33
fig 18.34

Related Answered Questions

Question: 18.11

Verified Answer:

The modal distribution of effective earthquake for...
Question: 18.3

Verified Answer:

                      [m]=m\left[\begin{arr...
Question: 18.5

Verified Answer:

                      f(t)=f_0 ~\sin \omega...