Holooly Plus Logo

Question 13.5: Consider a free vortex design for a compressor stage having ......

Consider a free vortex design for a compressor stage having a degree of reaction at the mean section equal to 0.6, hub-to-tip ratio of 0.6, and the flow angles \alpha_{1\text{m}}=30^\circ , \beta_{1\text{m}}=60^\circ.
Calculate the absolute and relative angles at the hub (\alpha_{\text{h}},\beta_{\text{h}}) and tip (\alpha_{\text{t}},\beta_{\text{t}}) for both stations (1) (upstream of the rotor) and (2) (downstream of the rotor). Also, calculate the degree of reaction at both hub and tip.
If the above compressor stage is to be designed by exponential method design instead of free vortex, then recalculate the absolute and relative angles at the hub (\alpha_{\text{h}},\beta_{\text{h}}) and tip (\alpha_{\text{t}},\beta_{\text{t}}) for both stations 1 (upstream of the rotor) and 2 (downstream of the rotor) and also the degree of reaction at both hub and tip. Additional data are given as follows:

a = 100 m/s, b = 40 m/s

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Given data: \alpha_{1\text{m}}=30^\circ,\beta_{\text{1m}}=60^\circ, \text{ and }\zeta=0.6.

1. Free vortex design:
The data here are the same as in Example 2, except for the degree of reaction. Thus, the following same results are obtained for the inlet flow along the blade:

\alpha_{1\text{h}}=37.6^\circ, \quad \alpha_{\text{1t}}=24.8^\circ,\quad \beta_{\text{1h}}=43.9^\circ, \quad \beta_{\text{1t}}=67.5^\circ

It was proved in Example 2 that the degree of reaction may be expressed by the relation

\Lambda=\frac{\tan \beta_1+\tan \beta_2}{2(\tan \alpha_1+\tan \beta_1)}

Applying this equation at the mean section, then

\tan \beta_{2\text{m}}=2\Lambda_{\text{m}}(\tan \alpha_{\text{1m}}+\tan \beta_{1\text{m}})-\tan \beta_{\text{1m}} \\ \tan \beta_{2\text{m}}=2\times 0.6 \times 2.3094-1.732=1.0392 \\ \beta_{2\text{m}}=46.1^\circ \\ \tan \alpha_{\text{2m}}=\frac{U_{\text{m}}}{C_{\text{a}}} -\tan \beta_{\text{2m}}=1.2702 \\ \alpha_{\text{2m}}=51.78^\circ \\ \Lambda=\frac{\tan \beta_1+\tan \beta_2}{2(\tan \alpha_1+\tan \beta_1)} \\ \Lambda_{\text{h}}=\frac{\tan \beta_{\text{1h}}+\tan \beta_{\text{2h}}}{2(\tan \alpha_{\text{1h}}+\tan \beta_{\text{1h}})} =0.2905 \\ \Lambda_{\text{t}}=\frac{\tan \beta_{\text{1t}}+\tan \beta_{2\text{t}}}{2(\tan \alpha_{\text{1t}}+\tan \beta_{\text{1t}})} =0.7438

The variation of the angles from hub to tip is plotted in Figure 13.27.

2. Exponential design method:
Since a=U_{\text{m}}(1-\Lambda_{\text{m}})=100,\Lambda_{\text{m}}=0.6,

U_{\text{m}}=\frac{100}{0.4}250 \text{ m/s}

Moreover, with b = 40 m/s

\Delta T_0=\frac{2bU_{\text{m}}}{Cp} =\frac{2 \times 40 \times 250}{1005} =19.9 \text{ K} \\ C_{\text{u1}}=a-\frac{b}{R}

Since R_{\text{h}}=0.75, R_{\text{t}}=1.25,then

C_{\text{u1h}}=46.7 \text{ m/s}, \quad C_{\text{u1t}}=68 \text{ m/s}

Since

\frac{U_{\text{m}}}{C_{\text{am}}} =\tan \alpha_{\text{1m}}+\tan \beta_{\text{1m}} \\ C_{\text{am}}=\frac{250}{\tan 30+\tan 60} =108.25 \text{ m/s} \\ C_{\text{a1h}}^2=C^2_{\text{am}}-2[a^2 \ln R+\frac{ab}{R}-ab ] \\ C^2_{\text{a1h}}=(108.25)^2-2[(100)^2 \ln \frac{3}{4}+\frac{100 \times 40}{(3/40)}-100 \times 40 ]

C_{\text{a1h}}=121.7 \text{ m/s},\text{ similarly }C_{\text{a1t}}=94.1 \text{ m/s}

From Table 13.3

C^2_{\text{a2}}=C^2_{\text{a2m}}-2[a^2 \ell nR-\frac{ab}{R}+ab ]

C_{\text{a2h}}=141.9 \text{ m/s and }C_{\text{u2h}}=a+(b/R_{\text{h}})=153.3 \text{ m/s}

C_{\text{u2t}}=132 \text{ m/s} \\ \tan \alpha_{\text{1h}}=\left(\frac{C_{\text{u1}}}{C_{\text{a1}}} \right) _{\text{h}}=0.384, \quad \alpha_{\text{1h}}=21^\circ \\ \tan \alpha_{2\text{h}}=\left(\frac{C_{\text{u}}2}{C_{\text{a2}}} \right) _{\text{h}}=0.93, \quad \alpha_{\text{2h}}=42.9 \\ \tan \alpha_{\text{1t }}=\left(\frac{C_{\text{u1}}}{C_{\text{a1}}} \right) _{\text{t}}=0.722, \quad \alpha_{\text{1t}}=35.85^\circ \\ \tan \alpha_{\text{2t}}=\left(\frac{C_{\text{u2}}}{C_{\text{a2}}} \right) _{\text{t}}=1.755, \quad \alpha_{\text{2t}}=60.32^\circ \\ U_{\text{h}}=\frac{3}{4}U_{\text{m}} =187.5 \text{ m/s} \quad \text{ and }\quad U_{\text{t}}=\frac{5}{4}U_{\text{m}} =312 \text{ m/s} \\ \left(\frac{U}{C_{\text{a1}}} \right) _{\text{h}}=\tan \alpha_{\text{1h}}+\tan \beta_{\text{1h}} \\ \tan \beta_{\text{1h}}=\frac{187.5}{121.7} -\tan21=1.1568

\beta_{\text{1h}}=49.15^\circ,\text{ similarly }\beta_{\text{1t}}=68.95^\circ

\tan \beta_{\text{2h}}=\left(\frac{U}{C_{\text{a2}}} \right) _{\text{h}}-\tan \alpha_{\text{2h}}=0.392

\beta_{\text{2h}}=21.4^\circ, \text{ similarly } \beta_{\text{2t}}=67.338^\circ

From both Tables 13.4 and 13.5 the following conclusions may be deduced:

1. The degree of reaction at hub for exponential design is much higher than the case of free vortex.
2. The rotor twist (\beta_1-\beta_2) for exponential design is less and much better than free vortex design.

TABLE 13.3 Governing Equations for Different Design Methods
C_{\text{u1}}=aR^n-\frac{b}{R} \\ a=U_{\text{m}}(1-\Lambda_{\text{m}}) a=U_{\text{m}}(1-\Lambda_{\text{m}}) \\ b=Cp\Delta T_{0s}/2U_{\text{m}}
Blading C_{\text{a}} Λ C_{\text{u}}
Free vortex

n = -1

C_{\text{a1}}=C_{\text{a1m}} \\ C_{\text{a2}}=C_{\text{a2m}}\\C_{\text{a1m}}=C_{\text{a2m}} \Lambda=1-\frac{a}{U_{\text{m}}R^2} \\ \Lambda=1-\frac{(1-\Lambda_{\text{m}})}{R^2}   C_{\text{u1}}=\frac{a-b}{R} \\ C_{\text{u2}}=\frac{a+b}{R}
Exponential

n = 0

C_{\text{a1}}^2-C_{\text{a1m}}^2=-2\left[a^2 \ell nR+\frac{ab}{R}-ab \right] \\ C_{\text{a2}}^2-C_{\text{a2m}}^2=-2\left[a^2 \ell nR-\frac{ab}{R}+ab \right] \\ C_{\text{a1m}}=C_{\text{a2m}} \\ C_{\text{a2}}^2-C_{\text{a1}}^2=4ab\left(\frac{1}{R}-1 \right) \Lambda=1+\frac{a}{U_{\text{m}}} -\frac{2a}{U_{\text{m}}R} \\ \Lambda =1+\left(1-\frac{2}{R} \right) (1-\Lambda_{\text{m}}) \\ \quad \\ \quad C_{\text{u1}}=a-\frac{b}{R} \\ C_{\text{u2}}=a+\frac{b}{R} \\ \quad \\ \quad
First power

n=1

C_{\text{a1}}^2-C_{\text{a1m}}^2=-2[a^2(R^2-1)-2ab \ell nR] \\ C_{\text{a2}}^2-C^2_{\text{a2m}}=-2[a^2(R^2-1)+2ab \ell n R]\\ C^2_{\text{a2}}-C_{\text{a1}}^2=-8ab \ell n R \\ C_{\text{a1m}}=C_{\text{a2m}} \Lambda=1+\frac{2a \ell nR}{U_{\text{m}}} -\frac{a}{U_{\text{m}}} \\ \Lambda=1+(2\ell nR-1)(1-\Lambda_{\text{m}}) \\ \quad \\ \quad C_{\text{u1}}=aR-\frac{b}{R} \\ C_{\text{u2}}=aR+\frac{b}{R}

 

TABLE 13.4 Summary of Results for Free Vortex Design
\frac{U}{C_{\text{a}}} \alpha_1 \beta_1 \alpha_2 \beta_2 Λ (\beta_1-\beta_2)
Hub 1.725 37.6 43.9 59.25 2.53 0.2905 41.37
Mean 2.3 30 60 51.78 46.1 0.6 13.9
Tip 2.875 24.8 67.5 45.25 61.8 0.7438 5.7

 

TABLE 13.5 Summary of Results for Exponential Method
U (m/s) C_{\text{a1}} C_{\text{a2}} \alpha_1 \beta_1 \alpha_2 \beta_2 Λ (\beta_1-\beta_2)
Hub 187.5 121.7 141.9 21 49.2 42.9 21.4 0.59 27.8
Mean 250 108.25 108.25 30 60 51.78 46.1 0.6 13.9
Tip 312.5 94.1 75.2 38.9 69 60.32 67.4 0.734 1.6
13.27

Related Answered Questions

Question: 13.4

Verified Answer:

The vortex energy equation is expressed by ...