Holooly Plus Logo

Question 13.3: For an axial compressor stage, using the vortex energy equat......

For an axial compressor stage, using the vortex energy equation

\frac{1}{r^2} \frac{d}{dr} \left(r^2C^2_{\text{u}}\right) +\frac{d}{dr} \left(C^2_{\text{a}}\right) =0

Prove that, if the flow is represented by a free vortex, rC_{\text{u}} = constant, then

1. C_{\text{a}}=\text{constant} \\ 2. \tan \alpha_{\text{1h}}=\left(\frac{1+\zeta}{2\zeta} \right) \tan \alpha_{1\text{m}} \\ 3. \tan \beta_{1\text{h}}=\left(\frac{2\zeta}{1+\zeta} \right) \tan \beta_{1\text{h}}+\frac{(3\zeta+1)(\zeta-1)}{2\zeta(1+\zeta)} \tan \alpha_{1\text{m}}

where ζ is the hub-to-tip ratio, \alpha_1 is the angle between the inlet absolute velocity and the axial direction, \beta_1 is the angle between the inlet relative velocity and the axial direction, and subscripts (h) and (m) refer to the hub and mean sections, respectively.

No data was found
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

1. For rC_{\text{u}} = constant

\therefore \frac{d}{dr} (rC_{\text{u}})=0

Then, from the vortex energy equation

\frac{1}{r^2} \frac{d}{dr} \left(r^2 C^2_{\text{u}}\right) +\frac{d}{dr} \left(C^2_{\text{a}}\right) =\frac{d}{dr} (C^2_{\text{a}})=0. \\ \text{Thus }C^2_{\text{a}}=\text{constant} \\ \therefore C_{\text{a}}= \text{constant}

A typical velocity triangle is illustrated in Figure 13.24.
2. Since \tan \alpha_{1\text{h}}=C_{\text{u1h}}/C_{\text{a}},\tan \alpha_{\text{1m}}=C_{\text{u1m}}/C_{\text{a}},\text{ and } C_{\text{a}}=\text{constant},

\frac{\tan \alpha_{1\text{h}}}{\tan \alpha_{1\text{m}}} =\frac{C_{\text{u1h}}}{C_{\text{u1m}}} \\ \tan \alpha_{1\text{h}}=\frac{C_{\text{u1h}}}{C_{\text{u1m}}} \tan \alpha_{1\text{m}} \quad \quad \quad (1) \\ \text{but }rC_{\text{u}}=\text{constant, or }r_{\text{h}}C_{\text{uh}}=r_{\text{m}}C_{\text{um}}

Then at state (1)

r_{\text{h}}C_{\text{u1h}}=r_{\text{m}}C_{\text{u1m}} \\ \frac{C_{\text{u1h}}}{C_{\text{u1m}}}=\frac{r_{\text{m}}}{r_{\text{h}}}

Then from Equation (1)

\therefore \tan \alpha_{\text{1h}}=\frac{r_{\text{m}}}{r_{\text{h}}} \tan \alpha_{\text{1m}} \\ \frac{r_{\text{m}}}{r_{\text{h}} }=\frac{r_{\text{h}}+r_{\text{t}}}{2r_{\text{h}}} =\frac{(r_{\text{h}}/r_{\text{t}})+1}{2(r_{\text{h}}/r_{\text{t}})} =\frac{1+\zeta}{2\zeta} \\ \tan \alpha_{\text{1h}}=\frac{1+\zeta}{2\zeta} \tan \alpha_{\text{1m}}

3. From the kinematical relations

\tan \alpha_{\text{1h}}+\tan \beta_{\text{1h}}=\frac{U_{\text{h}}}{C_{\text{a}}} \\ \tan \alpha_{{\text{1m}}}+\tan \beta_{\text{1m}}=\frac{U_{\text{m}}}{C_{\text{a}}} \\ \therefore \frac{\tan \alpha_{\text{1h}}+\tan \beta_{\text{1h}}}{\tan \alpha_{\text{1m}}+\tan \beta_{\text{1m}}} =\frac{U_{\text{h}}}{U_{\text{m}}} \\ \tan \alpha_{\text{1h}}+\tan \beta_{\text{1h}}=\frac{U_{\text{h}}}{U_{\text{m}}} (\tan \alpha_{\text{1m}}+\tan \beta_{\text{1m}}) \\ \tan \beta_{\text{1h}}=\frac{U_{\text{h}}}{U_{\text{m}}} (\tan \alpha_{\text{1m}}+\tan \beta_{\text{1m}})-\tan \alpha_{\text{1h}}

Since

\frac{U_{\text{h}}}{U_{\text{m}}} =\frac{r_{\text{h}}}{r_{\text{m}}} =\frac{2\zeta}{\zeta+1} \quad \text{and } \quad \tan \alpha_{\text{1h}}=\frac{1+\zeta}{2\zeta} \tan \alpha_{\text{1m}} \\ \therefore \tan \beta_{\text{1h}}=\frac{2\zeta}{\zeta+1} (\tan \alpha_{\text{1m}}+\tan \beta_{\text{1m}})-\frac{1+\zeta}{2\zeta} \tan \alpha_{\text{1m}} \\ \tan \beta_{\text{1h}}=\frac{2\zeta}{1+\zeta} \tan \beta_{\text{1m}}+\left[\frac{2\zeta}{\zeta+1} -\frac{1+\zeta}{2\zeta} \right] \tan \alpha_{1\text{m}} \\ \tan \beta_{\text{1h}}=\frac{2\zeta}{\zeta+1} \tan \beta_{\text{1m}}+\frac{4\zeta^2-(1+\zeta)^2}{2\zeta(1+\zeta)} \tan \alpha_{\text{1m}} \\ \tan \beta_{\text{1h}}=\frac{2\zeta}{\zeta+1} \tan \beta_{\text{1m}}+\frac{(3\zeta+1)(\zeta-1)}{2\zeta(1+\zeta)} \tan \alpha_{\text{1m}}

13.24

Related Answered Questions

Question: 13.4

Verified Answer:

The vortex energy equation is expressed by ...