Question 2.3: Consider a NMOS transistor biased with VGS = 0.65 V and with......

Consider a NMOS transistor biased with \mathrm{V}_{\mathrm{GS}}=0.65 \mathrm{~V} and with the device parameters listed for the 0.18-μm CMOS process in Table 1.5. How much does the drain current change with a 100 mV increase in V_{t n} , 5% decrease in C_{o x}, and 10% decrease in \mu_n?

Table 1.5  MOSFET parameters repre sentative of v arious C MOS t echnologies and used for rough hand calculations in this text.
0.8 μm 0.35 μm 0.18 μm 45 nm
Technology NMOS PMOS NMOS PMOS NMOS PMOS NMOS PMOS
\mu \mathrm{C}_{\mathrm{ox}}\left(\mu \mathrm{A} / \mathrm{V}^2\right) 92 30 190 55 270 70 280 70
\mathrm{V}_{\mathrm{t} 0}(\mathrm{~V}) 0.80 -0.90 0.57 -0.71 0.45 -0.45 0.45 -0.45
\lambda \cdot \mathrm{L}(\mu \mathrm{m} / \mathrm{V}) 0.12 0.08 0.16 0.16 0.08 0.08 0.10 0.15
\mathrm{C}_{\mathrm{ox}}\left(\mathrm{fF} / \mu \mathrm{m}^2\right) 1.8 1.8 4.5 4.5 8.5 8.5 25 25
\mathrm{t}_{\mathrm{ox}}(\mathrm{nm}) 18 18 8 8 5 5 1.2 1.2
n 1.5 1.5 1.8 1.7 1.6 1.7 1.85 1.85
\theta(1 / \mathrm{V}) 0.06 0.135 1.5 1.0 1.7 1.0 2.3 2.0
m 1.0 1.0 1.8 1.8 1.6 2.4 3.0 3.0
\mathrm{C}_{\mathrm{ov}} / \mathrm{W}=\mathrm{L}_{\mathrm{ov}} \mathrm{C}_{\mathrm{ox}} (\mathrm{fF} / \mu \mathrm{m})  0.20 0.20 0.20 0.20 0.35 0.35 0.50 0.50
\mathrm{C}_{\mathrm{db}} / \mathrm{W} \approx \mathrm{C}_{\mathrm{sb}} / \mathrm{W} (\mathrm{fF} / \mu \mathrm{m}) 0.50 0.80 0.75 1.10 0.50 0.55 0.45 0.50
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Note that since Table 1.5 indicates a threshold voltage of \mathrm{V}_{\mathrm{tn}}=0.45 \mathrm{~V}, \mathrm{a} \mathrm{V}_{\mathrm{t}} increase of  100 mV represents a 50% decrease in \mathrm{V}_{\mathrm{eff}},\text { from } 200  \mathrm{mV} \text { to } 100  \mathrm{mV} \text {. } Adopting a simple square law device model, a great simplification considering the large process variations present on λ, the nominal device drain current is given by

\mathrm{I}_{\mathrm{D}}=\frac{1}{2} \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{W}}{\mathrm{L}} \mathrm{V}_{\mathrm{eff}}^2

Accounting for all of the process variations, the new drain current will be

\mathrm{I}_{\mathrm{D}, \mathrm{new}}=\frac{1}{2}\left(0.9 \mu_{\mathrm{n}}\right)\left(0.95 \mathrm{C}_{\mathrm{ox}}\right) \frac{\mathrm{W}}{\mathrm{L}}\left(0.5 \mathrm{~V}_{\mathrm{eff}}\right)^2=\left(0.9 \cdot 0.95 \cdot 0.5^2\right) \mathrm{I}_{\mathrm{D}}=0.214 \cdot \mathrm{I}_{\mathrm{D}}

representing a 79% decrease in drain current. Much of this is a result of the V_t variation.

Related Answered Questions

Question: 2.1

Verified Answer:

Since the width and length are shown as 10λ and 2λ...