Question 2.1.2: Consider the forced vibration of a mass m connected to a spr......

Consider the forced vibration of a mass m connected to a spring of stiffness 2000 N/m being driven by a 20-N harmonic force at 10 Hz (20π rad/s). The maximum amplitude of vibration is measured to be 0.1 m and the motion is assumed to have started from rest (x0x_{0} = ν0ν_{0} = 0). Calculate the mass of the system.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

From equation (2.11) the response with x0x_{0} = ν0ν_{0} = 0 becomes

x(t) = ν0wnsinwnt + (x0 – f0w²n – w²)coswnt + f0w²n – w²coswt\frac{ν_{0}}{w_{n}}\sin w_{n}t  +  \left(x_{0}  –  \frac{f_{0}}{w²_{n}  –  w²}\right) \cos w_{n}t  +  \frac{f_{0}}{w²_{n}  –  w²} \cos wt          (2.11)

x(t) = f0w²n – w²(coswt – coswnt)\frac{f_{0}}{w²_{n}  –  w²} (\cos wt  –  \cos w_{n}t)        (2.12)

Using the trigonometric identity

cos u – cos ν = 2 sin(ν – u2)sin(ν + u2)\sin \left(\frac{ν  –  u}{2}\right) \sin \left(\frac{ν  +  u}{2}\right)

equation (2.12) becomes

x(t) = 2f0w²n – w²sin(wn – w2t)sin(wn + w2t)\frac{2f_{0}}{w²_{n}  –  w²} \sin \left(\frac{w_{n}  –  w}{2} t\right) \sin \left(\frac{w_{n}  +  w}{2} t\right)         (2.13)

The maximum value of the total response is evident from (2.13) so that

2f0w²n – w²\frac{2f_{0}}{w²_{n}  –  w²} = 0.1 m

Solving this for m from w²nw²_{n} = k/m and f0f_{0} = F0F_{0}/m yields

m = (0.1 m)(2000 N/m) – 2(20 N)(0.1m)(10 × 2π rad/s)²=4π²\frac{(0.1  m)(2000  N/m)  –  2(20  N)}{(0.1m)(10  ×  2 \pi  rad/s)²} = \frac{4}{\pi²} = 0.405 kg

Related Answered Questions