Holooly Plus Logo

Question 3.AE.14: Current ripples due to PWM current-source inverters cause vo......

Current ripples due to PWM current-source inverters cause voltage stress in windings of machines and transformers. The configuration of Fig. E3.14.1 represents a simple winding with two turns. Each winding can be represented by four segments having an inductance L_i , a resistance R_i , a capacitance to ground (frame) C_i , and some interturn capacitances C_{ij} and inductances L_{ij}. Figure E.3.14.2 represents a detailed equivalent circuit for the configuration of Fig. E3.14.1.

a) To simplify the analysis neglect the capacitances C_{ij} and the inductances L_{ij}. This leads to the circuit of Fig. E3.14.3, where the winding is fed by a PWM current source. One obtains the 15 differential equations of Eqs. E3.14-1 to E3.14-8a,b as listed below. In this case the current through L_1 is given (e.g., is(t)) and, therefore, there are only 15 differential equations, as compared with Application Example 3.13.
\frac{d v_1}{d t}=\frac{i_s}{C_1}-\frac{G_1}{C_1} v_1-\frac{i_2}{C_1}            (E3.14-1)

\frac{d_2}{d t}=-\frac{R_2}{L_2} i_2-\frac{\nu_2}{L_2}+\frac{v_1}{L_2},              (E3.14-2a)

\frac{d v_2}{d t}=\frac{i_2}{C_2}-\frac{G_2}{C_2} v_2-\frac{i_3}{C_2},                (E3.14-2b)

\frac{d i_3}{d t}=-\frac{R_3}{L_3} i_3-\frac{v_3}{L_3}+\frac{v_2}{L_3}                  (E3.14-3a)

\frac{d v_3}{d t}=\frac{i_3}{C_3}-\frac{G_3}{C_3} v_3-\frac{i_4}{C_3},              (E3.14-3b)

\frac{d i_4}{d t}=-\frac{R_4}{L_4} i_4-\frac{v_4}{L_4}+\frac{v_3}{L_4},            (E3.14-4a)

\frac{d v_4}{d t}=\frac{i_4}{C_4}-\frac{G_4}{C_4} v_4-\frac{i_5}{C_4}              (E3.14-4b)

\frac{d i_5}{d t}=-\frac{R_5}{L_5} i_5-\frac{v_5}{L_5}+\frac{v_4}{L_5},                (E3.14-5a)

\frac{d v_5}{d t}=\frac{i_5}{C_5}-\frac{G_5}{C_5} v_5-\frac{i_6}{C_5}                (E3.13-5b)

\frac{d i_6}{d t}=-\frac{R_6}{L_6} i_6-\frac{v_6}{L_6}+\frac{v_5}{L_6},              (E3.14-6a)

\frac{d v_6}{d t}=\frac{i_6}{C_6}-\frac{G_{6}}{C_6} v_6-\frac{i_7}{C_6}                (E3.14-6b)

\frac{d i_7}{d t}=-\frac{R_7}{L_7} i_7-\frac{v_7}{L_7}+\frac{v_6}{L_7},                  (E3.14-7a)

\frac{d v_7}{d t}=\frac{i 7}{C_7}-\frac{G_7}{C_7} v_7-\frac{i_8}{C_7},                (E3.14-7b)

\frac{d i_8}{d t}=-\frac{R_8}{L_8} i_8-\frac{v_8}{L_8}+\frac{v_7}{L_8},                (E3.14-8a)

\frac{d v_8}{d t}=\frac{i_{\mathrm{B}}}{C_8}-v_8\left(\frac{1}{Z C_8}+\frac{C_8}{C_8}\right) .                (E3.14-8b)

The parameters are

\begin{aligned} & {R}_1={R}_2={R}_3={R}_4={R}_5={R}_6={R}_7={R}_8=25~ \mu \Omega \\ & L_1=L_3=L_5=L_7=1 ~\mathrm{mH}, L_2=L_4=L_6=L_8=10 ~\mathrm{mH} \\ & C_1=C_3=C_5=C_7=0.7 ~\mathrm{pF}, C_2=C_4=C_6=C_8=7 ~\mathrm{pF}, \\ & C_{15}=C_{37}=0.35 ~\mathrm{pF}, C_{26}=C_{48}=3.5 ~\mathrm{pF} ; \\ & G_1=G_3=G_5=G_7=1 /(5000 ~\Omega) \text {, } \\ & G_2=G_4=G_6=G_8=1 /(500 ~\Omega) ; \text { and } \end{aligned}.
L_{15}=L_{37}=0.005 ~\mathrm{mH}, L_{26}=L_{48}=0.01~\mathrm{mH}

Z is either 1 μΩ (short-circuit) or 1 MΩ (open-circuit). Assume a PWM current-step function i_s(t) as indicated in Fig. E3.14.4.

b) For the simplified equivalent circuit using Mathematica compute all state variables during the time period from t=t_{calculate} =0 to 2.1 ms at rise times of t_{rise}=5 μs and 75 μs. Plot the current is (t) for 1 ms and voltages (v_1 – v_5),\ (v_2 – v_6),\ (v_3 – v_7),\ and\ (v_4 – v_8) for t_{plot}=2 ms.

245cdb37-dd19-4dc2-a7fe-bdbe3a152190
788c5f16-cc41-43e3-bec8-9155ba5e366b
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

To demonstrate the sensitivity of the induced voltage stress as a function of the rise time of the current ripple, a rise time of 5 μs has been assumed first and the results based on Table E3.14.1 are plotted in Figs. E3.14.5 to E3.14.9 for Z=10^{-6}Ω, that is the considered winding is short-circuited. Note, the voltage across capacitance C_{15} (that is, the voltage between the first turn and the second turn at the end region (ER)) is very large. For t_{rise} = 75 μs at Z=10-6Ω the voltage stress is smaller (see Figs. E3.14.10 to E3.14.14).

 

Table E3.14.1 Mathematica program list for Application Example 3.13 (part a) for short- circuit with Z=10^{-6}~Ω
amp=5;
period=200*^-6;
duty=0.5;
trise=5*Λ-6;
Is[t_]:=If[Mod[t,period]>
duty*period,
0,If[Mod[t,period]<trise,amp/
(trise)
*Mod[t,period],amp-amp/
(period*duty-trise)
*(Mod[t,period]-trise)]];
ic6=V3[0]==0;
eq7=I4’[t]==–R4/L4*I4[t]–V4[t]/L4+V3[t]/L4;
ic7=I4[0]==0;
eq8=V4’[t]==I4[t]/C4–G4/C4*V4[t]–I5[t]/C4;
ic8=V4[0]==0;
eq9=I5’[t]==–R5/L5*I5[t]–V5[t]/L5+V4[t]/L5;
ic9=I5[0]==0;
eq10=V5’[t]==I5[t]/C5–G5/C5*V5[t]-I6[t]/C5;
ic10=V5[0]==0;
eq11=I6’[t]==–R6/L6*I6[t]-V6[t]/L6+
V5[t]/L6;
Table E3.14.1 Mathematica program list for Application Example 3.13 (part a) for short- circuit with Z=10^{-6}~Ω
Plot[Is[t],{t,0,.001},
PlotRange!All,AxesLabel
!{“t”,”Is(t)”}]
R1=25*^–6; R2=25*^–6;
R3=25*^–6;
R4=25*^–6; R5=25*^–6;
R6=25*^–6; R7=
25*^–6; R8=25*^–6;
L1=1*^–3; L3=1*^–3;
L5=1*^–3; L7=1*^–3;
L2=10*^–3; L4=10*^–3;
L6=10*^–3; L8=10*^–3;
L15=5*^–6; L37=5*^–6;
L26=10*^–6; L4 8=10*^–6;
C1=.7*^–12; C3=.7*^–12;
C5=.7*^–12; C7
=.7*^–12;
C2=7*^–12; C4=7*^–12;
C6=7*^–12;
C8=7*^–12; C15=.35*^–12;
C37=.35*^–12;
C26=3.5*^–12; C48=3.5*^–
12;
G1=1/5000; G3=1/5000;
G5=1/5000; G7=1/5000;
G2=1/500; G4=1/500;
G6=1/500; G8=1/500;
Z=1*^–6;
eq2=V1’[t]==Is[t]/C1–G1/
C1*V1[t]–I2[t]/C1;
ic2=V1[0]==0;
eq3=I2’[t]==–R2/L2*I2[t]–
V2[t]/L2+V1[t]/L2;
ic3=I2[0]==0;
eq4=V2’[t]==I2[t]/C2–G2/
C2*V2[t]–I3[t]/C2;
ic4=V2[0]==0;
eq5=I3’[t]==–R3/L3*I3[t]–
V3[t]/L3+V2[t]/L3;
ic5=I3[0]==0;
eq6=V3’[t]==I3[t]/C3–G3/
C3*V3[t]–I4[t]/C3;
ic11=I6[0]==0;
eq12=V6’[t]==I6[t]/C6–G6/C6*V6[t]–I7[t]/C6;
ic12=V6[0]==0;
eq13=I7’[t]==–R7/L7*I7[t]–V7[t]/L7+ V6[t]/L7;
ic13=I7[0]==0;
eq14=V7’[t]==I7[t]/C7–G7/C7*V7[t]–I8[t]/C7;
ic14=V7[0]==0;
eq15=I8’[t]==–R8/L8*I8[t]–V8[t]/L8+V7[t]/L8;
ic15=I8[0]==0;
eq16=V8’[t]==I8[t]/C8–V8[t]*(1/(Z*C8)+G8/C8);
ic16=V8[0]==0;
sol1=NDSolve[{eq2,eq3,eq4,eq5,eq6,eq7,eq8,eq9,
eq10,eq11,eq12,eq13,eq14,eq15,eq16,ic2,ic3,ic4,ic5,
ic6,ic7,ic8,ic9,ic10,ic11,ic12,ic13,ic14,ic15,ic16}, {V1[t],
I2[t],V2[t],I3[t],V3[t],I4[t],V4[t],I5[t],V5[t],I6[t],
V6[t],I7[t],V7[t],I8[t],V8[t]},{t,0,.002},
MaxSteps!100000]
Plot[Evaluate[V1[t]/.sol1] Evaluate[V5[t]/.sol1],
{t,0,.002}, AxesLabel!{“Time”, “V1 – V5”}]
Plot[Evaluate[V2[t]/.sol1] –Evaluate[V6[t]/.sol1],
{t,0,.002}, AxesLabel!{“Time”, “V2 – V6”}]
Plot[Evaluate[V3[t]/.sol1] –Evaluate[V7[t]/.sol1],
{t,0,.002}, AxesLabel!{“Time”, “V3 – V7”}]
Plot[Evaluate[V4[t]/.sol1] –Evaluate[V8[t]/.sol1],
{t,0,.002}, AxesLabel!{“Time”, “V4 – V8”}]

 

68b8072e-24c1-46b0-91b6-be966aebd316
b1aad5a6-2ef8-4c34-a576-aab5fd60be2e
22e6fada-1138-4ff8-934d-98d8ad0752ca
bf1bcffd-4479-4015-92c0-08ed844adf28

Related Answered Questions