Holooly Plus Logo

Question 5.9: Decomposition Into Vector and Axial Vector Couplings Prove r......

Decomposition Into Vector and Axial Vector Couplings

Prove relation (5.133),

\gamma_{\mu}\gamma_{\lambda}\gamma_{\nu}=(s_{\mu\lambda\nu\beta}+\mathrm{i}{\varepsilon_{\mu\lambda\nu\beta}}\gamma_{5})\gamma^{\beta}     (5.133)

\gamma_{\mu}\gamma_{\alpha}\gamma_{\nu}=(s_{\mu\alpha\nu\beta}+\mathrm{i}\varepsilon_{\mu\alpha\nu\beta}\gamma_{5})\gamma^{\beta}\ .     (1)

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

\gamma_{\mu}\gamma_{\alpha}\gamma_{\nu} anticommutes with \gamma_{5}. On the other hand, it must be a linear combination of the 16 matrices which span the Clifford space, namely 1,\gamma_{5},\gamma_{\mu},\gamma_{\mu} \gamma_{5}, and \sigma_{\mu\nu}. Obviously this implies \gamma_{\mu}\gamma_{\alpha}\gamma_{\nu}=a_{\mu\alpha\nu\beta}\gamma^{\beta}+b_{\mu\alpha\nu\beta}\gamma_{5}\gamma^{\beta}\;\;.     (2)

Multiplying by \gamma_{\delta} and taking the trace we find with

\mathrm{tr}\{\gamma_{\mu}\gamma_{\alpha}\gamma_{\nu}\gamma_{5}\}=4(g_{\mu\alpha}g_{\nu\delta}+g_{\mu\delta}g_{\nu\alpha}-g_{\mu\nu}g_{\alpha\delta})

=4a_{\mu\alpha\nu\delta}     (3)

and

\mathrm{tr}\{\gamma^{\beta}\gamma_{\delta}\}=g_{\delta}^{\beta}\ ,\quad\mathrm{tr}\{\gamma_{5}\gamma^{\beta}\gamma^{\delta}\}=0

that

g_{\mu\alpha}g_{\nu\delta}+g_{\mu\delta}g_{\nu\alpha}-g_{\mu\nu}g_{\alpha\delta}=a_{\mu\alpha\nu\delta}\ .    (4)

The second coefficient is determined by multiplying (2) by \gamma_{\delta}\gamma_{5} and taking the trace

4b_{\mu\alpha\nu\delta}=4\mathrm{i}\varepsilon_{\mu\alpha\nu\delta}\;\;.    (5)

Thus we have proven (1):

\gamma_{\mu}\gamma_{\alpha}\gamma_{\nu}=g_{\mu\alpha}\gamma_{\nu}+g_{\mathrm{\nu}\alpha}\gamma_{\mu}-g_{\mu\nu}\gamma_{\alpha}+\mathrm{i}\varepsilon_{\mu\alpha\nu\delta}\gamma_{5}\gamma^{\delta}~.     (6)

Related Answered Questions