Holooly Plus Logo

Question 5.4: The Maximum Transverse Momentum (a) Determine the maximum tr......

The Maximum Transverse Momentum

(a) Determine the maximum transverse momentum of a parton occurring in the final state if the photon momentum before the collision is given in the Breit system (see Exercise 3.6) by

q_{\mu}=(0 ; 0,0,-Q)   (1)

and the initial parton momentum in the Breit system is

p_{\mu}=(p ; 0,0, p).      (2)

(b) Verify the relation \nu_{\max }=s / 2 and investigate the kinematical region accessible at the HERA collider.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) We first assume that two partons escape after the collision. These partons carry momenta

\begin{aligned} p_{1}^{\prime} & =\left(\frac{p}{2} ; {p}_{\perp}, \frac{p-Q}{2}\right) \\ p_{2}^{\prime} & =\left(\frac{p}{2} ;-{p}_{\perp}, \frac{p-Q}{2}\right) & (3) \end{aligned}

Obviously the four-momentum is conserved:

q+p=p_{1}^{\prime}+p_{2}^{\prime}.    (4)

Furthermore squaring the parton momentum p_{1}^{\prime} yields

\begin{aligned} \left(p_{1}^{\prime}\right)^{2} & =0=\left(\frac{p}{2}\right)^{2}-\left({p}_{\perp}\right)^{2}-\left(\frac{p-Q}{2}\right)^{2} \\ & =\left(\frac{p}{2}\right)^{2}-\left({p}_{\perp}\right)^{2}-\left(\frac{p}{2}\right)^{2}+\frac{2 p \cdot Q}{4}-\left(\frac{Q}{2}\right)^{2} \\ & =-\left({p}_{\perp}\right)^{2}+\frac{p \cdot Q}{2}-\left(\frac{Q}{2}\right)^{2}, & (5) \end{aligned}

because it is assumed to be of rest mass zero, i.e. p_{1}^{\prime 2}=0. Introducing the momentum fraction x=Q^{2} /(2 p \cdot Q), one gets

-\left({p}_{\perp}\right)^{2}-\left(\frac{Q}{2}\right)^{2}+\frac{Q^{2}}{4 x}=0     (6)

or

\left|{p}_{\perp}\right|=\frac{Q}{2} \sqrt{\frac{1-x}{x}}.     (7)

For more than two partons in the final state this is the maximum transverse momentum that can be achieved.

(b) According to the definition (5.11), \nu=q \cdot p_{p}, we have in the rest system of the nucleon

\begin{aligned} \nu & \stackrel{\text { R.S. }}{=}\left(E_{e}-E_{e}^{\prime}\right) M_{p}, \\ \nu_{\max } & =E_{e} M_{p} & (8) \end{aligned}

For the center-of-mass energy

\begin{aligned} & s=\left(p_{p}+p_{e}\right)^{2}=M_{p}^{2}+2 p_{p} \cdot p_{e}+m_{e}^{2} \sim 2 p_{p} \cdot p_{e} \\ & \stackrel{\text { R.S. }}{=} 2 E_{e} M_{p}=2 \nu_{\max }. & (9) \end{aligned}

From this we get for x_{\min }

x_{\min }=\frac{Q^{2}}{2 \nu_{\max }} \simeq \frac{Q^{2}}{s}.     (10)

For HERA kinematics E_{e}=30  \mathrm{GeV}, E_{p}=820  \mathrm{GeV}, so that

s \simeq e E_{e} E_{p} \simeq 10^{5}  \mathrm{GeV}^{2}.        (11)

Then we get for Q^{2} \sim 5  \mathrm{GeV} a minimal value x_{\min } \sim 10^{-4}.

Related Answered Questions