Holooly Plus Logo

Question 12.P.7: Derive the expression for depth of flow in a channel of circ......

Derive the expression for depth of flow in a channel of circular section for maximum flow.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Refer figure.

Let the flow depth be y, and Let the angle subtended be θ.

Wetted perimeter P = 2 R θ

Flow area               =(2\ \theta/2\ \pi)\ \pi R^{2}-R\ \sin\theta\ R\ \mathrm{cos}\ \theta=R^{2}\theta-(R^{2}/2)\ \sin\ 2\theta

=(R^{2}/2)\ (2\theta -\sin\ 2\theta)

Using Chezy’s equation,

{Q}=A V=A C~\sqrt{\frac{A}{P}~S_{b}}\;=C\left[\frac{A^{3}}{P}~S_{b}\right]^{0.5}

Q will be maximum if A³/P is maximum. The condition is determined, using

\left[\frac{d{(A^{3}/P)}}{d\theta}\right]=0\quad i.e.,\quad\frac{P\times3\times A^{2}\ \frac{d A}{d\theta}-A^{3}\ \frac{d P}{d\theta}}{P^{2}}=0

or              3P\ {\cfrac{d A}{d\theta}}=A\,{\cfrac{d P}{d\theta}}

P=2\;R\;\theta,\;\;\;\;∴\;\;\;\frac{d P}{d\theta}=2\;R, \\ A=\left(R^{2}/2\right)\left[2\theta-\sin\,2\theta\right] \\ {\frac{d A}{d\theta}}={\frac{R^{2}}{2}}\ (2-2\cos2\theta), Substituting

3\times\ 2R\theta\ {\frac{R^{2}}{2}}\ (2-2\cos2\theta)={\frac{R^{2}}{2}}\ (2-2\sin2\theta)\ 2 R

3\theta(1-\cos2\theta)=[\theta-(\sin2\theta/2)]

2\theta-3\theta\cos2\theta+{\frac{\sin2\theta}{2}}=0

This is a transcendental equation to be solved by trial, θ = 2.69 radian or about 154°. (check using radian mode in the calculator)

The area for flow      =R^{2}\,\theta-\frac{R^{2}}{2}\,\sin\,2\theta=3.0818\,R^{2}

Perimeter                   =2 R\theta=\;5.3756\;R\;\;\;\;∴\;\;\;R_{h}=0.5733\;R

Depth of flow             =R-R\cos\theta={\mathrm{R}}({\mathrm{1}}-{\mathrm{cos~}}\theta)=1.8988\ R{\mathrm{~or~}}0.9494\,D

Note: This uses Chezy equation:

In case Manning equation is used, then the flow,

Q=\frac{A}{N}\left(\frac{A}{P}\right)^{3/2}\;S_{b}^{\mathrm{~}1/2}=\frac{1}{N}\,\frac{A^{5/2}}{P^{3/2}}\;S_{b}^{\mathrm{~}1/2}

\frac{A^{5/2}}{P^{3/2}}\,~\mathrm{or}\,~~\frac{A^{5}}{P^{3}} should be maximized with θ as independent variable

P^{3}\times5\times A^{4}\,{\frac{d A}{d\theta}}-A^{5}\,3P^{2}\,{\frac{d P}{d\theta}}=0, Substituting,

5P\,{\frac{d A}{d\theta}}-3A\,{\frac{d P}{d\theta}}=0 and Substituting for \frac{d A}{d\theta}\mathrm{~and~}\frac{d P}{d\theta}

5\times\ 2R\theta\ {\frac{R^{2}}{2}}\ (2-2\cos2\theta)=3\ {\frac{R^{2}}{2}}\ (2\theta-\sin2\theta)\times2R \\ 5\theta(2-2\cos2\theta)-3(2\theta-\sin2\theta)=0,\quad{\mathrm{or}}\quad4\theta-10\theta\cos2\theta+3\sin2\theta=0

Solving,                  θ = 2.5007    radian       or          143.28°

In this case depth   R-R\ \cos\,\theta=R(1-\cos\,\theta)=1.802\ R\quad{\mathrm{or}}\quad0.901\,D

P 12.7

Related Answered Questions

Question: 12.P.8

Verified Answer:

Refer problem Problem 12.7. A={\frac{R^{2}}...