Holooly Plus Logo

Question 12.5: Design a transistor bootstrap sweep generator to provide an ......

Design a transistor bootstrap sweep generator to provide an output amplitude of 10 V over a time period of 1 ms. The ramp is to be triggered by a negative going pulse with an amplitude of 5 V, a pulse width of 1 ms and a time interval between the pulses is 0.1ms. The load resistance is 1 kΩ and the ramp is to be linear within 1 per cent. The supply voltage is 18 V,\ h_{FE(min)} = 100 .

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Refer to the bootstrap circuit shown in Fig. 12.16(a).
\ R_{L} = R_{E} = 1 kΩ

When\ V_{o} = 0,
\ I_{E2} = \frac{0 − (−V_{EE})}{R_{E}}  = \frac{18  V}{1  k Ω} = 18 mA

When\ V_{o} = V_{s}(= 10V),
\ I_{E2} = \frac{10 − (−V_{EE})}{R_{E}} = \frac{28  V}{1  k Ω} = 28 mA

At\ V_{o} = 0,
\ I_{B2} = \frac{I_{E2}}{h_{FE} } = \frac{18  mA}{100} = 0.18 mA

At\ V_{o} = V_{s},
\ I_{B2} = \frac{I_{E2}}{h_{FE}} = \frac{28}{100} = 0.28 mA      \ ΔI_{B2} = 0.28 − 0.18 = 0.10 mA

\ I_{1} is much larger than\ I_{B2}
Let

\ I_{1} = 100 × ΔI_{B2} = 100 × 0.10 mA = 10 mA            \ C_{1} = \frac{I_{1}T_{s}}{V_{s}} = \frac{10 × 10^{−3} × 1 × 10^{−3}}{10V} = 1 μF

\ V_{R1} = V_{CC} − V_{D1} − V_{CE}(sat) = 18 − 0.7 − 0.2 = 17.1 V      \ R_{1} = \frac{V_{R1}}{I_{1}} = \frac{17.1}{10 × 10^{−3}} = 1.71 kΩ

For 1 per cent non-linearity due to discharge of\ C_{3}:
\ ΔV_{C3} = 1 per cent of the initial\ V_{CC} level
Initial
\ V_{C3} = V_{CC} = 18 V        \ ΔV_{C3} = \frac{18 × 1}{100} = 0.18 V

And\ C_{3} discharge current\ I_{1} is equal to 10 mA. Therefore,
\ C_{3} = \frac{I_{1}T_{(spacing)}}{ΔV_{C3}} = \frac{10 × 10^{−3} × 1 × 10^{−3}}{0.18 V }= 55 μF

The discharge time of\ C_{1} is 0.1ms which is 1/10 th of the charging time. For\ Q_{1} to discharge\ C_{1} in 1/10 th of the charging time,
\ I_{C1} = 10 × (C_{1} charging current) = 10 × 10 mA = 100 mA

\ I_{B1} = \frac{I_{C1}}{h_{FE}}= \frac{100  mA}{100} = 1 mA        \ R_{B} = \frac{V_{CC} − V_{BE1}}{I_{B1}} = \frac{18 − 0.7}{1  mA} = \frac{17.3  V}{1  mA} = 17.3 kΩ

Choose\ R_{B} = 20 kΩ,\ Q_{1} is to be biased OFF at the end of the input pulse.
\ |ΔV_{B}| = ν_{o} − (pulse amplitude) = 0.7 − 5 V = −4.3 V

The charging current of\ C_{2} is equal to the current through\ R_{B} when\ Q_{1} is OFF.

\ I = \frac{V_{CC} − V_{i}}{R_{B}} = \frac{18 − (−5)}{20  kΩ} = \frac{23  V}{20  kΩ} = 1.15 mA

\ C_{2} = \frac{I × t}{ΔV_{B}} = \frac{1.15  mA × 1  ms}{4.3  V }= 0.27μF

fig 12.16 a

Related Answered Questions