Holooly Plus Logo

Question 16.2: Design diagram of structure containing two hinged-end member......

Design diagram of structure containing two hinged-end members is shown in Fig. 16.8a. Modulus of elasticity E and area of cross section A are constant for both members; l and  l \sqrt{3} are length of the members, \alpha=60^{\circ}, \beta=30^{\circ} . Find eigenvalues and modal matrix and present the mode shapes.

16.8
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The structure has two degrees of freedom. The first and second unit states and corresponding internal forces S for each member are shown in Fig. 16.8b.

Equations (16.4a) for unknown amplitudes

\begin{array}{r}\left(m \delta_{11} \omega^2-1\right) A_1+m \delta_{12} \omega^2 A_2=0 \\m \delta_{21} \omega^2 A_1+\left(m \delta_{22} \omega^2-1\right) A_2=0\end{array}     (b)

\begin{aligned}& \left(m_1 \delta_{11} \omega^2-1\right) A_1+m_2 \delta_{12} \omega^2 A_2=0 \\& m_1 \delta_{21} \omega^2 A_1+\left(m_2 \delta_{22} \omega^2-1\right) A_2=0 .\end{aligned}        (16.4a)

Unit displacements

\begin{aligned}& \delta_{11}=\sum \int \frac{S_1 \cdot S_1}{E A} d s=\frac{1}{E A}\left(\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} \cdot l+\frac{1}{2} \cdot \frac{1}{2} \cdot l \sqrt{3}\right)=\frac{l}{4 E A}(3+\sqrt{3}) \\& \delta_{22}=\sum \int \frac{S_2 \cdot S_2}{E A} d s=\frac{1}{E A}\left(\frac{1}{2} \cdot \frac{1}{2} \cdot l+\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} \cdot l \sqrt{3}\right)=\frac{l}{4 E A}(1+3 \sqrt{3}) \\& \delta_{12}=\delta_{21}=\sum \int \frac{S_1 \cdot S_2}{E A} d s=\frac{1}{E A}\left(\frac{\sqrt{3}}{2} \cdot \frac{1}{2} \cdot l-\frac{1}{2} \cdot \frac{\sqrt{3}}{2} \cdot l \sqrt{3}\right)=\frac{l}{4 E A}(\sqrt{3}-3)\end{aligned}

Let us denote \lambda=\frac{1}{m \delta_0 \omega^2}, \delta_0=\frac{l}{4 E A} , then

\delta_{11}=\delta_0(3+\sqrt{3}), \quad \delta_{22}=\delta_0(1+3 \sqrt{3}), \quad \delta_{12}=\delta_{21}=\delta_0(\sqrt{3}-3)

and equation (b) becomes

\begin{aligned}& (3+\sqrt{3}-\lambda) A_1+(\sqrt{3}-3) A_2=0 \\& (\sqrt{3}-3) A_1+(1+3 \sqrt{3}-\lambda) A_2=0\end{aligned} \quad \text { or } \quad \begin{array}{r}(4.7320-\lambda) A_1-1.2679 A_2=0 \\-1.2679 A_1+(6.1961-\lambda) A_2=0\end{array}         (c)

Frequency equation

D=\left[\begin{array}{cc}4.7320-\lambda & -1.2679 \\-1.2679 & 6.1961-\lambda\end{array}\right]=0

Roots (in decreasing order) of frequency equation and corresponding (in decreasing order) eigenvalues are

\begin{aligned}& \lambda_1=6.9280 \rightarrow \omega_1^2=\frac{1}{\lambda_1 m \delta_0}=\frac{4 E A}{6.9280 \mathrm{ml}}=0.5774 \frac{E A}{m l} \\& \lambda_2=4.0002 \rightarrow \omega_2^2=\frac{1}{\lambda_2 m \delta_0}=0.9999 \frac{E A}{m l} \cong \frac{E A}{m l}\end{aligned}

Mode shape of vibration may be determined on the basis of equation (b). For first mode \left(\lambda_1=6.9280\right)  the ratio of amplitudes is

\begin{aligned}& \frac{A_2}{A_1}=-\frac{3+\sqrt{3}-\lambda_1}{\sqrt{3}-3}=\frac{4.7320-6.9280}{1.2679}=-1.73=-\sqrt{3} \\& \frac{A_2}{A_1}=-\frac{\sqrt{3}-3}{1+3 \sqrt{3}-\lambda_1}=\frac{1.2679}{6.1961-6.9280}=-\sqrt{3}\end{aligned}

Assume that A_1=1 , so the first eigenvector \boldsymbol{\varphi}  becomes \varphi=\left\lfloor\begin{array}{ll}\varphi_{11} & \varphi_{21}\end{array}\right]^T=\left\lfloor\begin{array}{ll}1 & -\sqrt{3}\end{array}\right]^T

For second mode \left(\lambda_2=4.0002\right)  the ratio of amplitudes are

\begin{aligned}& \frac{A_2}{A_1}=\frac{4.7320-4.0002}{1.2679}=0.577=\frac{1}{\sqrt{3}} \\& \frac{A_2}{A_1}=\frac{1.2679}{6.1961-4.0002}=0.577=\frac{1}{\sqrt{3}}\end{aligned}

The modal matrix \boldsymbol{\Phi}  is then defined as

\boldsymbol{\Phi}=\left[\begin{array}{cc}1 & 1 \\-\sqrt{3} & 1 / \sqrt{3}\end{array}\right] 

Corresponding mode shapes of vibration are shown in Fig. 16.8c. Orthogonality condition is (Kiselev 1980)

   \left\lfloor\begin{array}{ll} 1 & -\sqrt{3} \end{array}\right\rfloor\left[\begin{array}{cc} m & 0 \\ 0 & m \end{array}\right]\left[\begin{array}{c} 1 \\ 1 / \sqrt{3} \end{array}\right]=0

Control

 \begin{aligned} & \text { 1. } \frac{1}{\omega_1^2}+\frac{1}{\omega_2^2}=m_1 \delta_{11}+m_2 \delta_{22}: \\ & \frac{1}{\omega_1^2}+\frac{1}{\omega_2^2}=\frac{m l}{0.5774 E A}+\frac{m l}{0.9999 E A}=2.7320 \frac{\mathrm{ml}}{E A} \\ & m_1 \delta_{11}+m_2 \delta_{22}=m \frac{1}{4 E A}(3+\sqrt{3})+m \frac{1}{4 E A}(1+3 \sqrt{3})=2.7320 \frac{\mathrm{ml}}{E A} \end{aligned}

Control 2. \left(\frac{A_2}{A_1}\right)_{\omega_1} \times\left(\frac{A_2}{A_1}\right)_{\omega_2}=-\frac{m_1}{m_2}

 \left(\frac{A_2}{A_1}\right)_{\omega_1} \times\left(\frac{A_2}{A_1}\right)_{\omega_2}=-\sqrt{3} \times \frac{1}{\sqrt{3}}=-1, \quad-\frac{m_1}{m_2}=-1

Related Answered Questions

Question: 16.14

Verified Answer:

Parameter of the corrected functions \psi[/...
Question: 16.1

Verified Answer:

The system has two degrees of freedom. Generalized...
Question: 16.10

Verified Answer:

Expressions for displacement and slope at x=l [lat...
Question: 16.8

Verified Answer:

The initial parameters and kinematical conditions ...