Holooly Plus Logo

Question 16.1: Design diagram of the frame is shown in Fig. 16.7a. Find eig......

Design diagram of the frame is shown in Fig. 16.7a. Find eigenfrequencies and mode shape of vibration.

16.7
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The system has two degrees of freedom. Generalized coordinate are q_1  and q_2 . We need to apply unit forces in direction of q_1  and q_2 , and construct the bending moments diagram. Unit displacements are

  \begin{aligned} & \delta_{11}=\sum \int \frac{\bar{M}_1 \bar{M}_1}{E I} \mathrm{~d} x=\frac{\bar{M}_1 \times \bar{M}_1}{E I}=\frac{1}{2 E I} \cdot \frac{1}{2} \cdot 1 \cdot l \cdot l \cdot \frac{2}{3} \cdot 1 \cdot l+\frac{1}{E I} \cdot 1 \cdot l \cdot h \cdot 1 \cdot l=\frac{l^3}{6 E I}+\frac{l^2 h}{E I} ; \\ & \delta_{22}=\frac{\bar{M}_2 \times \bar{M}_2}{E I}=\frac{1}{E I} \cdot \frac{1}{2} \cdot 1 \cdot h \cdot h \cdot \frac{2}{3} 1 \cdot h=\frac{h^3}{3 E I} ; \\ & \delta_{12}=\delta_{21}=\frac{\bar{M}_1 \times \bar{M}_2}{E I}=\frac{1}{E I} \cdot \frac{1}{2} \cdot 1 \cdot h \cdot h \cdot 1 \cdot l=\frac{h^2 l}{2 E I} . \end{aligned}

Let h=2 l  and \delta_0=\frac{l^3}{6 E I} . In this case \delta_{11}=13 \delta_0 ; \delta_{22}=16 \delta_0 ; \delta_{12}=\delta_{21}=12 \delta_0 . Equation for calculation of amplitudes (14.4)

 P_{\lim }=\frac{6 M_y^{\mathrm{vert}}}{l}      (14.4)

\begin{aligned}& \left(13 \delta_0 m \omega^2-1\right) A_1+12 \delta_0 m \omega^2 A_2=0 \\& 12 \delta_0 m \omega^2 A_1+\left(16 \delta_0 m \omega^2-1\right) A_2=0\end{aligned}      ( a)

Let \lambda=\frac{1}{\delta_0 m \omega^2}=\frac{6 E I}{m \omega^2 l^3} . In this case equation (a) may be rewritten

\begin{aligned}& (13-\lambda) A_1+12 A_2=0 \\& 12 A_1+(16-\lambda) A_2=0\end{aligned}

Frequency equation becomes

D=\left[\begin{array}{cc}13-\lambda & 12 \\12 & 16-\lambda\end{array}\right]=(13-\lambda)(16-\lambda)-144=0

Roots in descending order are \lambda_1=26.593 ; \lambda_2=2.4066

Eigenfrequencies in increasing order are

\omega_1=\sqrt{\frac{6 E I}{\lambda_1 m l^3}}=0.4750 \sqrt{\frac{E I}{m l^3}}, \quad \omega_2=\sqrt{\frac{6 E I}{\lambda_2 m l^3}}=1.5789 \sqrt{\frac{E I}{m l^3}}

Control 1: According to (16.7) we have \frac{1}{\omega_1^2}+\frac{1}{\omega_2^2}=m_1 \delta_{11}+m_2 \delta_{22} . In our case

 \frac{1}{\omega_1^2}+\frac{1}{\omega_2^2}=m_1 \delta_{11}+m_2 \delta_{22}          (16.7)

\begin{aligned}& \frac{1}{\omega_1^2}+\frac{1}{\omega_2^2}=\frac{m l^3}{0.4750^2 E I}+\frac{m l^3}{1.5789^2 E I}=(4.4321+0.4011) \frac{m l^3}{E I}=4.8332 \frac{m l^3}{E I} \\& m_1 \delta_{11}+m_2 \delta_{22}=m \times 13 \delta_0+m \times 16 \delta_0=29 m \delta_0=29 m \frac{l^3}{6 E I}=4.8333 \frac{m l^3}{E I}\end{aligned}

Mode shape of vibration may be determined on the basis of equations (b).

For first mode \left(\lambda_1=26.593\right)  ratio of amplitudes are

\begin{aligned}& \frac{A_2}{A_1}=-\frac{13-\lambda}{12}=-\frac{13-26.593}{12}=1.1328 \\& \frac{A_2}{A_1}=-\frac{12}{16-\lambda}=-\frac{12}{16-26.593}=1.1328\end{aligned}

Assume that A_1=1 , so the first eigenvector \boldsymbol{\varphi}  becomes

\varphi=\left\lfloor\begin{array}{ll}\varphi_{11} & \varphi_{21}\end{array}\right\rfloor^T=\left\lfloor\begin{array}{ll}1 & 1.1328\end{array}\right\rfloor^T

For second mode \left(\lambda_2=2.4066\right)  ratio of amplitudes are

   \begin{aligned} & \frac{A_2}{A_1}=-\frac{13-2.4066}{12}=-0.8828 \\ & \frac{A_2}{A_1}=-\frac{12}{16-2.4066}=-0.8828 \end{aligned}

The modal matrix \boldsymbol{\Phi}  is then defined as

\boldsymbol{\Phi}=\left[\begin{array}{cc} 1 & 1 \\ 1.1328 & -0.8828 \end{array}\right]

Corresponding mode shapes of vibration are shown in Fig. 16.7b. It easy to check the scalar multiplication of two vectors \varphi_1^T M \varphi_2=0 , where M is diagonal mass matrix (Kiselev 1980). In our case we have

\left\lfloor\begin{array}{ll}1 & 1.1328\end{array}\right]\left[\begin{array}{cc}m & 0 \\0 & m\end{array}\right]\left[\begin{array}{c}1 \\-0.8828\end{array}\right]=(1-1.000036) m \cong 0

This result shows that both forms of vibrations are orthogonal. It means that the force which corresponds to the first mode does not produce a work on the displacements of the second mode, and vice versa.

Control 2: Relationships (16.8) for our case leads to the following results

 \left(\frac{A_2}{A_1}\right)_{\omega_1} \times\left(\frac{A_2}{A_1}\right)_{\omega_2}=-\frac{m_1}{m_2}        (16.8)

\left(\frac{A_2}{A_1}\right)_{\omega_1} \times\left(\frac{A_2}{A_1}\right)_{\omega_2}=1.1328(-0.8828)=-1.0 \quad \text { and } \quad-\frac{m_1}{m_2}=-1

Related Answered Questions

Question: 16.14

Verified Answer:

Parameter of the corrected functions \psi[/...
Question: 16.10

Verified Answer:

Expressions for displacement and slope at x=l [lat...
Question: 16.8

Verified Answer:

The initial parameters and kinematical conditions ...