Holooly Plus Logo

Question 7.4: Determine in an efficient manner the fourth moment of the ra......

Determine in an efficient manner the fourth moment of the random variable X whose PDF is given by

\,\displaystyle f_X\left (x\right )=32 x^2 e^{-4 x} \quad x \geq 0
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The easiest method of solving this problem is via the transform method. Thus, we first need to obtain the s-transform of the PDF. We shall use four methods to do this. The first method is a brute-force method, and the other three are “smart” methods.

a. Brute-Force Method In this method
we attempt to obtain MX(s) directly as follows:

\,\displaystyle M_X\left (s\right )=\int_0^{\infty} e^{-s x} f_X\left (x\right ) d x=32 \int_0^{\infty} x^2 e^{-\left (s+4\right ) x} d x\\

 

Let \,\displaystyle u=x^2 \Rightarrow d u=2 x d x and let \,\displaystyle d v=e^{-\left (s+4\right ) x} d x \Rightarrow v=-e^{-\left (s+4\right ) x} /\left (s+4\right ). Thus,

\,\displaystyle M_X\left (s\right )=32\left[-\frac{x^2 e^{-\left (s+4\right ) x}}{s+4}\right]_0^{\infty}+\frac{32}{s+4} \int_0^{\infty} 2 x e^{-\left (s+4\right ) x} d x=\frac{64}{s+4} \int_0^{\infty} x e^{-\left (s+4\right ) x} d x\\

 

Let \,\displaystyle u=x \Rightarrow d u=d x, and let \,\displaystyle d v=e^{-\left (s+4\right ) x} d x \Rightarrow v=-e^{-\left (s+4\right ) x} /\left (s+4\right ). Thus,

\,\displaystyle \begin{aligned} M_X\left (s\right ) & =\frac{64}{s+4}\left\{\left[-\frac{x e^{-\left (s+4\right ) x}}{s+4}\right]_0^{\infty}+\int_0^{\infty} \frac{e^{-\left (s+4\right ) x}}{s+4} d x\right\}=\frac{64}{\left (s+4\right )^2} \int_0^{\infty} e^{-\left (s+4\right ) x} d x \\ & =\frac{64}{\left (s+4\right )^2}\left[-\frac{e^{-\left (s+4\right ) x}}{s+4}\right]_0^{\infty}=\frac{64}{\left (s+4\right )^3}=\frac{4^3}{\left (s+4\right )^3}=\left (\frac{4}{s+4}\right )^3 \end{aligned}

 

b. Smart Method 1
In this method we exploit the properties of the moments of the exponential distribution in carrying out the integration. Thus, we proceed as follows:

\,\displaystyle M_X\left (s\right )=\int_0^{\infty} e^{-s x} f_X\left (x\right ) d x=32 \int_0^{\infty} x^2 e^{-\left (s+4\right ) x} d x

Let \mu =s+4 . Then we have that

\,\displaystyle M_X\left (s\right )=32 \int_0^{\infty} x^2 e^{-\mu x} d x=\frac{32}{\mu} \int_0^{\infty} \mu x^2 e^{-\mu x} d x

 

Now, the integration term is essentially the second moment of an exponential random variable X with parameter \mu. From the results in Chapter 4 we know that for an exponential random variable,

\,\displaystyle E\left[X^n\right]=\frac{n !}{\mu^n} \quad n=1,2, \ldots

(See Equation 4.33.) Thus we have that

\,\displaystyle E\left[X^n\right]=\int_0^{\infty} x^n f_X\left (x\right ) d x=\frac{n !}{\lambda^n} \quad n=1,2, \ldots \qquad (4.33)\\ \,\displaystyle M_X\left (s\right )=\frac{32}{\mu}\left\{\frac{2 !}{\mu^2}\right\}=\frac{64}{\mu^3}=\frac{64}{\left (s+4\right )^3}=\left (\frac{4}{s+4}\right )^3

 

c. Smart Method 2
In this method we realize that X is an Erlang random variable. But to determine its order and parameter we need to put its PDF in the standard form of the Erlang PDF as follows:

\,\displaystyle f_X\left (x\right )=\frac{\lambda^k x^{k-1} e^{-\lambda x}}{\left (k-1\right ) !} \equiv 32 x^2 e^{-4 x} \quad x \geq 0

From the power of x we see that k-1=2 , which means that k=3. That is, X is a third-order Erlang random variable. Similarly, from the exponential term we that \lambda =4. Let Y be the underlying exponentially distributed random variable. Then the PDF of Y and its stransform are given by

\,\displaystyle \begin{aligned} & f_Y\left (y\right )=4 e^{-4 y} \quad y \geq 0 \\ & M_Y\left (s\right )=\frac{4}{s+4} \end{aligned}

Thus, X=Y_1+Y_2+Y_3 , where the Y_k are independent and identically distributed with the above PDF. Since the s-transform of the PDF of the sum of independent random variables is equal to the product of their s-transforms, we have that

\,\displaystyle M_X\left (s\right )=\left[M_Y\left (s\right )\right]^3=\left (\frac{4}{s+4}\right )^3

 

d. Smart Method 3

As in the previous methods, we start with

\,\displaystyle M_X\left (s\right )=32 \int_0^{\infty} x^2 e^{-\left (s+4\right ) x} d x=32 \int_0^{\infty} x^2 e^{-\mu x} d x

Because the integrand (or integral kernel) looks like an Erlang-3 PDF, we rearrange it to obtain a true Erlang-3 PDF as follows:

\,\displaystyle x^2 e^{-\mu x}=\left\{\frac{\mu^3 x^2 e^{-\mu x}}{2 !}\right\}\left (\frac{2 !}{\mu^3}\right )=\frac{2}{\mu^3}\left\{\frac{\mu^3 x^2 e^{-\mu x}}{2 !}\right\}=\frac{2}{\mu^3} f_{X_3}\left (x\right )\\

 

This means that

\,\displaystyle \begin{aligned} M_X\left (s\right ) & =32 \int_0^{\infty} x^2 e^{-\mu x} d x=\frac{\left (32\right )\left (2\right )}{\mu^3} \int_0^{\infty} \frac{\mu^3 x^2}{2 !} e^{-\mu x} d x=\frac{64}{\mu^3} \int_0^{\infty} \frac{\mu^3 x^2}{2 !} e^{-\mu x} d x \\ & =\frac{64}{\mu^3}=\frac{4^3}{\mu^3}=\left (\frac{4}{\mu}\right )^3=\left (\frac{4}{s+4}\right )^3 \end{aligned}

 

where the first equality of the second line follows from the fact that the integral is equal to 1 because a valid PDF is integrated over the entire range of the values of x . The Rest of the Solution: Having obtained the s-transform of the PDF, the fourth moment of X is given by

\,\displaystyle \begin{aligned} E\left[X^4\right] & =\left.\left (-1\right )^4 \frac{d^4}{d s^4} M_X\left (s\right )\right\vert _{s=0}=\left.\frac{d^4}{d s^4}\left (\frac{4}{s+4}\right )^3\right\vert _{s=0} \\ & =\left.\frac{\left (-3\right )\left (-4\right )\left (-5\right )\left (-6\right )\left (4\right )^3}{\left (s+4\right )^7}\right\vert _{s=0}=\left.\frac{\left (360\right )\left (4\right )^3}{\left (s+4\right )^7}\right\vert _{s=0}=1.40625 \end{aligned}

Related Answered Questions

Question: 7.6

Verified Answer:

One of the tests for a function of z to be a valid...
Question: 7.2

Verified Answer:

To be a valid s-transform of a PDF, A(0)[/l...