Question D.5: Determine the moment of inertia Ic with respect to the horiz......

Determine the moment of inertia I_c with respect to the horizontal axis C–C through the centroid C of the beam cross section shown in Fig. D-16. (The position of the centroid C was determined previously in Example D-2 of Section D.2.)
Note: From beam theory (Chapter 5), axis C–C is the neutral axis for bending of this beam; therefore, the moment of inertia I_c must be determined in order to calculate the stresses and deflections of this beam.

D.16
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Find the moment of inertia I_c with respect to axis C–C by applying the parallel-axis theorem to each individual part of the composite area.
The area divides naturally into three parts: (1) the cover plate, (2) the wide-flange section, and (3) the channel section. The following areas and centroidal distances were obtained previously in Example D-2:
\quad\quad\quad\quad A_{1}=37.5\mathrm{cm}^{2}\quad A_{2}=178\mathrm{cm}^{2}\quad A_{3}=75.8\mathrm{cm}^{2} \\ \quad\quad\quad\quad \overline{y}_{1}=227.5~\mathrm{{mm}}\quad\mathrm{~}\overline{y}_{2}=0\quad\mathrm{~\overline{y}_{3}=246{~\mathrm{mm}}\quad\mathrm{~}\overline{c}=34.73\,m m}
The moments of inertia of the three parts with respect to horizontal axes through their own centroids C_1, C_2, ~and~ C_3 are
\quad\quad\quad\quad I_{1}={\frac{bh^{3}}{12}}={\frac{1}{12}}(25 \mathrm{{cm}})(1.5 \mathrm{{cm}})^{3}=7.031\mathrm{{cm}}^{4} \\ \quad\quad\quad\quad  I_2 = 63720 ~cm^4 \quad I_3= 597~cm^4
The moments of inertia I_2 ~ and ~ I_3 are obtained from Tables F-1 and F-3, respectively, of Appendix F.
Now use the parallel-axis theorem to calculate the moments of inertia about axis C–C for each of the three parts of the composite area:
\quad\quad\quad\quad (I_{c})_{1} = I_{1} + A_{1}(\overline{{{y_{1}}}} + \overline{{{c}}} )^{2}=7.031~\mathrm{{cm}}^{4}\, + \,(37.5\,\mathrm{{cm}}^{2})(26.22\,\mathrm{{cm}})^{2} = 25790\,\mathrm{{cm}}^{4} \\\quad\quad\quad\quad (I_{c})_{2} = I_{2} + A_{2}\overline{{{c}}} ^{2}=63720 ~\mathrm{{cm}}^{4}\, + \,(178\,\mathrm{{cm}}^{2})(34.73\,\mathrm{{cm}})^{2} = 65870\,\mathrm{{cm}}^{4} \\\quad\quad\quad\quad  (I_{c})_{3} = I_{3} + A_{3}(\overline{{{y}}}_{3} – \overline{{{c}}})^{2}=597 ~\mathrm{{cm}}^{4}\, + \,(75.8\,\mathrm{{cm}}^{2})(21.13\,\mathrm{{cm}})^{2} = 34430\,\mathrm{{cm}}^{4}
The sum of these individual moments of inertia gives the moment of inertia of the entire cross-sectional area about its centroidal axis C–C:
\quad\quad\quad\quad I_c = (I_c)_1 + (I_c)_2 + (I_c)_3 = 1.261 \times 10^5 ~ cm^4
This example shows how to calculate moments of inertia of composite areas by using the parallel-axis theorem.

Table F-1
Properties of European Wide-Flange Beams
Designation Mass per meter Area of section Depth of section Width of section Thickness Strong axis 1-1 Weak axis 2-2
G A h b t_w t_f I_1 S_1 r_1 I_2 S_2 r_2
kg/m cm² mm mm mm mm cm⁴ cm³ cm cm⁴ cm³ cm
HE 1000 B 314 400 1000 300 19 36 644700 12890 40.15 16280 1085 6.38
HE 900 B 291 371.3 900 300 18.5 35 494100 10980 36.48 15820 1054 6.53
HE 700 B 241 306.4 700 300 17 32 256900 7340 28.96 14440 962.7 6.87
HE 650 B 225 286.3 650 300 16 31 210600 6480 27.12 13980 932.3 6.99
HE 600 B 212 270 600 300 15.5 30 171000 5701 25.17 13530 902 7.08
HE 550 B 199 254.1 550 300 15 29 136700 4971 23.2 13080 871.8 7.17
HE 600 A 178 226.5 590 300 13 25 141200 4787 24.97 11270 751.4 7.05
HE 450 B 171 218 450 300 14 26 79890 3551 19.14 11720 781.4 7.33
HE 550 A 166 211.8 540 300 12.5 24 111900 4146 22.99 10820 721.3 7.15
HE 360 B 142 180.6 360 300 12.5 22.5 43190 2400 15.46 10140 676.1 7.49
HE 450 A 140 178 440 300 11.5 21 63720 2896 18.92 9465 631 7.29
HE 340 B 134 170.9 340 300 12 21.5 36660 2156 14.65 9690 646 7.53
HE 320 B 127 161.3 320 300 11.5 20.5 30820 1926 13.82 9239 615.9 7.57
HE 360 A 112 142.8 350 300 10 17.5 33090 1891 15.22 7887 525.8 7.43
HE 340 A 105 133.5 330 300 9.5 16.5 27690 1678 14.4 7436 495.7 7.46
HE 320 A 97.6 124.4 310 300 9 15.5 22930 1479 13.58 6985 465.7 7.49
HE 260 B 93 118.4 260 260 10 17.5 14920 1148 11.22 5135 395 6.58
HE 240 B 83.2 106 240 240 10 17 11260 938.3 10.31 3923 326.9 6.08
HE 280 A 76.4 97.26 270 280 8 13 13670 1013 11.86 4763 340.2 7
HE 220 B 71.5 91.04 220 220 9.5 16 8091 735.5 9.43 2843 258.5 5.59
HE 260 A 68.2 86.82 250 260 7.5 12.5 10450 836.4 10.97 3668 282.1 6.5
HE 240 A 60.3 76.84 230 240 7.5 12 7763 675.1 10.05 2769 230.7 6
HE 180 B 51.2 65.25 180 180 8.5 14 3831 425.7 7.66 1363 151.4 4.57
HE 160 B 42.6 54.25 160 160 8 13 2492 311.5 6.78 889.2 111.2 4.05
HE 140 B 33.7 42.96 140 140 7 12 1509 215.6 5.93 549.7 78.52 3.58
HE 120 B 26.7 34.01 120 120 6.5 11 864.4 144.1 5.04 317.5 52.92 3.06
HE 140 A 24.7 31.42 133 140 5.5 8.5 1033 155.4 5.73 389.3 55.62 3.52
HE 100 B 20.4 26.04 100 100 6 10 449.5 89.91 4.16 167.3 33.45 2.53
HE 100 A 16.7 21.24 96 100 5 8 349.2 72.76 4.06 133.8 26.76 2.51

Note: Axes 1-1 and 2-2 are principal centroidal axes

Table F-3
Properties of European Standard Channels
Mass per meter Area of section Depth of section Width of section
Designation Thickness Strong axis 1-1 Weak axis 2-2
G A h b t_w t_f I_1 S_1 r_1 I_2 S_2 r_2 c
kg/m cm² mm mm mm mm cm⁴ cm³ cm cm⁴ cm³ cm cm
UPN 400 71.8 91.5 400 110 14 18 20350 1020 14.9 846 102 3.04 2.65
UPN 380 63.1 80.4 380 102 13.5 16 15760 829 14 615 78.7 2.77 2.38
UPN 350 60.6 77.3 350 100 14 16 12840 734 12.9 570 75 2.72 2.4
UPN 320 59.5 75.8 320 100 14 17.5 10870 679 12.1 597 80.6 2.81 2.6
UPN 300 46.2 58.8 300 100 10 16 8030 535 11.7 495 67.8 2.9 2.7
UPN 280 41.8 53.3 280 95 10 15 6280 448 10.9 399 57.2 2.74 2.53
UPN 260 37.9 48.3 260 90 10 14 4820 371 9.99 317 47.7 2.56 2.36
UPN 240 33.2 42.3 240 85 9.5 13 3600 300 9.22 248 39.6 2.42 2.23
UPN 220 29.4 37.4 220 80 9 12.5 2690 245 8.48 197 33.6 2.3 2.14
UPN 200 25.3 32.2 200 75 8.5 11.5 1910 191 7.7 148 27 2.14 2.01
UPN 180 22 28 180 70 8 11 1350 150 6.95 114 22.4 2.02 1.92
UPN 160 18.8 24 160 65 7.5 10.5 925 116 6.21 85.3 18.3 1.89 1.84
UPN 140 16 20.4 140 60 7 10 605 86.4 5.45 62.7 14.8 1.75 1.75
UPN 120 13.4 17 120 55 7 9 364 60.7 4.62 43.2 11.1 1.59 1.6
UPN 100 10.6 13.5 100 50 6 8.5 206 41.2 3.91 29.3 8.49 1.47 1.55
UPN 80 8.64 11 80 45 6 8 106 26.5 3.1 19.4 6.36 1.33 1.45

Notes: 1. Axes 1-1 and 2-2 are principal centroidal axes.
2. The distance c is measured from the centroid to the back of the web.
3. For axis 2-2, the tabulated value of S is the smaller of the two section moduli for this axis.

Related Answered Questions