Determine the moment of inertia I_c with respect to the horizontal axis C–C through the centroid C of the beam cross section shown in Fig. D-16. (The position of the centroid C was determined previously in Example D-2 of Section D.2.)
Note: From beam theory (Chapter 5), axis C–C is the neutral axis for bending of this beam; therefore, the moment of inertia I_c must be determined in order to calculate the stresses and deflections of this beam.
Find the moment of inertia I_c with respect to axis C–C by applying the parallel-axis theorem to each individual part of the composite area.
The area divides naturally into three parts: (1) the cover plate, (2) the wide-flange section, and (3) the channel section. The following areas and centroidal distances were obtained previously in Example D-2:
\quad\quad\quad\quad A_{1}=37.5\mathrm{cm}^{2}\quad A_{2}=178\mathrm{cm}^{2}\quad A_{3}=75.8\mathrm{cm}^{2} \\ \quad\quad\quad\quad \overline{y}_{1}=227.5~\mathrm{{mm}}\quad\mathrm{~}\overline{y}_{2}=0\quad\mathrm{~\overline{y}_{3}=246{~\mathrm{mm}}\quad\mathrm{~}\overline{c}=34.73\,m m}
The moments of inertia of the three parts with respect to horizontal axes through their own centroids C_1, C_2, ~and~ C_3 are
\quad\quad\quad\quad I_{1}={\frac{bh^{3}}{12}}={\frac{1}{12}}(25 \mathrm{{cm}})(1.5 \mathrm{{cm}})^{3}=7.031\mathrm{{cm}}^{4} \\ \quad\quad\quad\quad I_2 = 63720 ~cm^4 \quad I_3= 597~cm^4
The moments of inertia I_2 ~ and ~ I_3 are obtained from Tables F-1 and F-3, respectively, of Appendix F.
Now use the parallel-axis theorem to calculate the moments of inertia about axis C–C for each of the three parts of the composite area:
\quad\quad\quad\quad (I_{c})_{1} = I_{1} + A_{1}(\overline{{{y_{1}}}} + \overline{{{c}}} )^{2}=7.031~\mathrm{{cm}}^{4}\, + \,(37.5\,\mathrm{{cm}}^{2})(26.22\,\mathrm{{cm}})^{2} = 25790\,\mathrm{{cm}}^{4} \\\quad\quad\quad\quad (I_{c})_{2} = I_{2} + A_{2}\overline{{{c}}} ^{2}=63720 ~\mathrm{{cm}}^{4}\, + \,(178\,\mathrm{{cm}}^{2})(34.73\,\mathrm{{cm}})^{2} = 65870\,\mathrm{{cm}}^{4} \\\quad\quad\quad\quad (I_{c})_{3} = I_{3} + A_{3}(\overline{{{y}}}_{3} – \overline{{{c}}})^{2}=597 ~\mathrm{{cm}}^{4}\, + \,(75.8\,\mathrm{{cm}}^{2})(21.13\,\mathrm{{cm}})^{2} = 34430\,\mathrm{{cm}}^{4}
The sum of these individual moments of inertia gives the moment of inertia of the entire cross-sectional area about its centroidal axis C–C:
\quad\quad\quad\quad I_c = (I_c)_1 + (I_c)_2 + (I_c)_3 = 1.261 \times 10^5 ~ cm^4
This example shows how to calculate moments of inertia of composite areas by using the parallel-axis theorem.
Table F-1 | ||||||||||||
Properties of European Wide-Flange Beams | ||||||||||||
Designation | Mass per meter | Area of section | Depth of section | Width of section | Thickness | Strong axis 1-1 | Weak axis 2-2 | |||||
G | A | h | b | t_w | t_f | I_1 | S_1 | r_1 | I_2 | S_2 | r_2 | |
kg/m | cm² | mm | mm | mm | mm | cm⁴ | cm³ | cm | cm⁴ | cm³ | cm | |
HE 1000 B | 314 | 400 | 1000 | 300 | 19 | 36 | 644700 | 12890 | 40.15 | 16280 | 1085 | 6.38 |
HE 900 B | 291 | 371.3 | 900 | 300 | 18.5 | 35 | 494100 | 10980 | 36.48 | 15820 | 1054 | 6.53 |
HE 700 B | 241 | 306.4 | 700 | 300 | 17 | 32 | 256900 | 7340 | 28.96 | 14440 | 962.7 | 6.87 |
HE 650 B | 225 | 286.3 | 650 | 300 | 16 | 31 | 210600 | 6480 | 27.12 | 13980 | 932.3 | 6.99 |
HE 600 B | 212 | 270 | 600 | 300 | 15.5 | 30 | 171000 | 5701 | 25.17 | 13530 | 902 | 7.08 |
HE 550 B | 199 | 254.1 | 550 | 300 | 15 | 29 | 136700 | 4971 | 23.2 | 13080 | 871.8 | 7.17 |
HE 600 A | 178 | 226.5 | 590 | 300 | 13 | 25 | 141200 | 4787 | 24.97 | 11270 | 751.4 | 7.05 |
HE 450 B | 171 | 218 | 450 | 300 | 14 | 26 | 79890 | 3551 | 19.14 | 11720 | 781.4 | 7.33 |
HE 550 A | 166 | 211.8 | 540 | 300 | 12.5 | 24 | 111900 | 4146 | 22.99 | 10820 | 721.3 | 7.15 |
HE 360 B | 142 | 180.6 | 360 | 300 | 12.5 | 22.5 | 43190 | 2400 | 15.46 | 10140 | 676.1 | 7.49 |
HE 450 A | 140 | 178 | 440 | 300 | 11.5 | 21 | 63720 | 2896 | 18.92 | 9465 | 631 | 7.29 |
HE 340 B | 134 | 170.9 | 340 | 300 | 12 | 21.5 | 36660 | 2156 | 14.65 | 9690 | 646 | 7.53 |
HE 320 B | 127 | 161.3 | 320 | 300 | 11.5 | 20.5 | 30820 | 1926 | 13.82 | 9239 | 615.9 | 7.57 |
HE 360 A | 112 | 142.8 | 350 | 300 | 10 | 17.5 | 33090 | 1891 | 15.22 | 7887 | 525.8 | 7.43 |
HE 340 A | 105 | 133.5 | 330 | 300 | 9.5 | 16.5 | 27690 | 1678 | 14.4 | 7436 | 495.7 | 7.46 |
HE 320 A | 97.6 | 124.4 | 310 | 300 | 9 | 15.5 | 22930 | 1479 | 13.58 | 6985 | 465.7 | 7.49 |
HE 260 B | 93 | 118.4 | 260 | 260 | 10 | 17.5 | 14920 | 1148 | 11.22 | 5135 | 395 | 6.58 |
HE 240 B | 83.2 | 106 | 240 | 240 | 10 | 17 | 11260 | 938.3 | 10.31 | 3923 | 326.9 | 6.08 |
HE 280 A | 76.4 | 97.26 | 270 | 280 | 8 | 13 | 13670 | 1013 | 11.86 | 4763 | 340.2 | 7 |
HE 220 B | 71.5 | 91.04 | 220 | 220 | 9.5 | 16 | 8091 | 735.5 | 9.43 | 2843 | 258.5 | 5.59 |
HE 260 A | 68.2 | 86.82 | 250 | 260 | 7.5 | 12.5 | 10450 | 836.4 | 10.97 | 3668 | 282.1 | 6.5 |
HE 240 A | 60.3 | 76.84 | 230 | 240 | 7.5 | 12 | 7763 | 675.1 | 10.05 | 2769 | 230.7 | 6 |
HE 180 B | 51.2 | 65.25 | 180 | 180 | 8.5 | 14 | 3831 | 425.7 | 7.66 | 1363 | 151.4 | 4.57 |
HE 160 B | 42.6 | 54.25 | 160 | 160 | 8 | 13 | 2492 | 311.5 | 6.78 | 889.2 | 111.2 | 4.05 |
HE 140 B | 33.7 | 42.96 | 140 | 140 | 7 | 12 | 1509 | 215.6 | 5.93 | 549.7 | 78.52 | 3.58 |
HE 120 B | 26.7 | 34.01 | 120 | 120 | 6.5 | 11 | 864.4 | 144.1 | 5.04 | 317.5 | 52.92 | 3.06 |
HE 140 A | 24.7 | 31.42 | 133 | 140 | 5.5 | 8.5 | 1033 | 155.4 | 5.73 | 389.3 | 55.62 | 3.52 |
HE 100 B | 20.4 | 26.04 | 100 | 100 | 6 | 10 | 449.5 | 89.91 | 4.16 | 167.3 | 33.45 | 2.53 |
HE 100 A | 16.7 | 21.24 | 96 | 100 | 5 | 8 | 349.2 | 72.76 | 4.06 | 133.8 | 26.76 | 2.51 |
Note: Axes 1-1 and 2-2 are principal centroidal axes
Table F-3 | |||||||||||||
Properties of European Standard Channels | |||||||||||||
Mass per meter | Area of section | Depth of section | Width of section | ||||||||||
Designation | Thickness | Strong axis 1-1 | Weak axis 2-2 | ||||||||||
G | A | h | b | t_w | t_f | I_1 | S_1 | r_1 | I_2 | S_2 | r_2 | c | |
kg/m | cm² | mm | mm | mm | mm | cm⁴ | cm³ | cm | cm⁴ | cm³ | cm | cm | |
UPN 400 | 71.8 | 91.5 | 400 | 110 | 14 | 18 | 20350 | 1020 | 14.9 | 846 | 102 | 3.04 | 2.65 |
UPN 380 | 63.1 | 80.4 | 380 | 102 | 13.5 | 16 | 15760 | 829 | 14 | 615 | 78.7 | 2.77 | 2.38 |
UPN 350 | 60.6 | 77.3 | 350 | 100 | 14 | 16 | 12840 | 734 | 12.9 | 570 | 75 | 2.72 | 2.4 |
UPN 320 | 59.5 | 75.8 | 320 | 100 | 14 | 17.5 | 10870 | 679 | 12.1 | 597 | 80.6 | 2.81 | 2.6 |
UPN 300 | 46.2 | 58.8 | 300 | 100 | 10 | 16 | 8030 | 535 | 11.7 | 495 | 67.8 | 2.9 | 2.7 |
UPN 280 | 41.8 | 53.3 | 280 | 95 | 10 | 15 | 6280 | 448 | 10.9 | 399 | 57.2 | 2.74 | 2.53 |
UPN 260 | 37.9 | 48.3 | 260 | 90 | 10 | 14 | 4820 | 371 | 9.99 | 317 | 47.7 | 2.56 | 2.36 |
UPN 240 | 33.2 | 42.3 | 240 | 85 | 9.5 | 13 | 3600 | 300 | 9.22 | 248 | 39.6 | 2.42 | 2.23 |
UPN 220 | 29.4 | 37.4 | 220 | 80 | 9 | 12.5 | 2690 | 245 | 8.48 | 197 | 33.6 | 2.3 | 2.14 |
UPN 200 | 25.3 | 32.2 | 200 | 75 | 8.5 | 11.5 | 1910 | 191 | 7.7 | 148 | 27 | 2.14 | 2.01 |
UPN 180 | 22 | 28 | 180 | 70 | 8 | 11 | 1350 | 150 | 6.95 | 114 | 22.4 | 2.02 | 1.92 |
UPN 160 | 18.8 | 24 | 160 | 65 | 7.5 | 10.5 | 925 | 116 | 6.21 | 85.3 | 18.3 | 1.89 | 1.84 |
UPN 140 | 16 | 20.4 | 140 | 60 | 7 | 10 | 605 | 86.4 | 5.45 | 62.7 | 14.8 | 1.75 | 1.75 |
UPN 120 | 13.4 | 17 | 120 | 55 | 7 | 9 | 364 | 60.7 | 4.62 | 43.2 | 11.1 | 1.59 | 1.6 |
UPN 100 | 10.6 | 13.5 | 100 | 50 | 6 | 8.5 | 206 | 41.2 | 3.91 | 29.3 | 8.49 | 1.47 | 1.55 |
UPN 80 | 8.64 | 11 | 80 | 45 | 6 | 8 | 106 | 26.5 | 3.1 | 19.4 | 6.36 | 1.33 | 1.45 |
Notes: 1. Axes 1-1 and 2-2 are principal centroidal axes.
2. The distance c is measured from the centroid to the back of the web.
3. For axis 2-2, the tabulated value of S is the smaller of the two section moduli for this axis.