Holooly Plus Logo

Question 17.1: Displacements and Forces in a Statically Indeterminate Beam ......

Displacements and Forces in a Statically Indeterminate Beam

A propped cantilevered beam of flexural rigidity EI is subjected to end load P as shown in Figure 17.9(a). Using the FEM, find:

a. The nodal displacements.

b. The nodal forces and moments.

F17.9
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

We discretize the beam into elements with nodes 1, 2, and 3, as shown in Figure 17.9(a). By Equation (17.19),

\left\{\begin{array}{l} \bar{F}_{1 y} \\ \bar{M}_1 \\ \bar{F}_{2 y} \\ \bar{M}_2 \end{array}\right\}_e=\frac{E I}{L^3} \left[\begin{array}{cccc} 12 & 6 L & -12 & 6 L \\ & 4 L^2 & -6 L & 2 L^2 \\ & & 12 & -6 L \\ \text { Symmetric } & & & 4 L^2 \end{array}\right] \left\{\begin{array}{c} \overline{ \upsilon }_1 \\ \bar{\theta}_1 \\ \overline{ \upsilon }_2 \\ \bar{\theta}_2 \end{array}\right\} _e        (17.19a)

\{\bar{F}\}_e=[\bar{k}]_e\{\delta\}_e          (17.19b)

\begin{array}{llll}  & && & & & &\upsilon _1 &&& \theta_1 && \upsilon _2 && \theta_2 \end{array} \\ [k]_1=\frac{E I}{L^3} \left[\begin{array}{cccc} 12 & 6 L & -12 & 6 L \\ & 4 L^2 & -6 L & 2 L^2 \\ & & 12 & -6 L \\ \text { Symmetric } & & & 4 L^2 \end{array}\right] \begin{aligned} & \upsilon _1 \\ & \theta_1 \\ & \upsilon _2 \\ & \theta_2 \end{aligned}

\begin{array}{llll}  & && & & & &\upsilon _2 &&& \theta_2 && \upsilon _3 && \theta_3 \end{array} \\ [k]_2=\frac{E I}{L^3} \left[\begin{array}{cccc} 12 & 6 L & -12 & 6 L \\ & 4 L^2 & -6 L & 2 L^2 \\ & & 12 & -6 L \\ \text { Symmetric } & & & 4 L^2 \end{array}\right] \begin{aligned} & \upsilon _2 \\ & \theta_2 \\ & \upsilon _3 \\ & \theta_3 \end{aligned}

a. The global stiffness matrix of the beam can now be assembled: [K]=[k]_1+[k]_2 . The governing equations for the beam are then

\left\{\begin{array}{l} F_{1 y} \\ M_1 \\ F_{2 y} \\ M_2 \\ F_{3 y} \\ M_3 \end{array}\right\}=\frac{E I}{L^3} \left[\begin{array}{cccccc} 12 & 6 L & -12 & 6 L & 0 & 0 \\ & 4 L^2 & -6 L & 2 L^2 & 0 & 0 \\ & & 24 & 0 & -12 & 6 L \\ & & & 8 L^2 & -6 L & 2 L^2 \\ & & & & 12 & -6 L \\ \text { Symmetric } & & & & & 4 L^2 \end{array}\right] \left\{\begin{array}{l} \upsilon _1 \\ \theta_1 \\ \upsilon _2 \\ \theta_2 \\ \upsilon _3 \\ \theta_3 \end{array}\right\}        (17.20a)

or

\{F\}=[K]\{\delta\}          (17.20b)

The boundary conditions are \upsilon_2=0, \theta_3=0, \text { and } \upsilon_3=0 . Partitioning the first, second, and fourth of these equations associated with the unknown displacements,

\left\{\begin{array}{c} -P \\ 0 \\ 0 \end{array}\right\}=\frac{E I}{L^3}\left[\begin{array}{ccc} 12 & 6 L & 6 L \\ 6 L & 4 L^2 & 2 L^2 \\ 6 L & 2 L^2 & 8 L^2 \end{array}\right]\left\{\begin{array}{l} \upsilon_1 \\ \theta_1 \\ \theta_2 \end{array}\right\}

Solving for nodal displacements, we obtain

\upsilon_1=-\frac{7 P L^3}{12 E I}, \quad \theta_1=\frac{3 P L^2}{4 E I}, \quad \theta_2=\frac{P L^2}{4 E I}

b. Introducing these equations into Equation (17.20a), after multiplying, the nodal forces and moments are found to be

F_{1 y}=-P \quad M_1=0, \quad F_{2 y}=\frac{5}{2} P,

M_2=0 \quad F_{3 y}=-\frac{3}{2} P, \quad M_3=\frac{1}{2} P L

Note that M_1 and M_2 are 0, since no reactive moments are present on the beam at nodes 1 and 2.

Comments: In general, it is necessary to determine the local nodal forces and moments associated with each element to analyze the entire structure. For the case under consideration, it may readily be observed from a free-body diagram of element 1 that \left( M _2\right)_1=-P L . Hence, we obtain the shear and moment diagrams for the beam as shown in Figures 17.9(b) and (c), respectively.

Related Answered Questions