Holooly Plus Logo

Question 17.2: Displacements in a Frame A planar rectangular frame 1234 is ......

Displacements in a Frame

A planar rectangular frame 1234 is fixed at both supports l and 4 (Figure 17.12). The load on the frame consists of a horizontal force P acting at joint 2 and a moment M applied at joint 3. By the FEA, calculate the nodal displacements.

Given: P =4 kips, M =2 kips · in.,   L=5 ft, E=30 \times 10^6 psi, and A =5 in.² for all elements; I =120 in.^4 for elements 1 and 3 and I =60 in. ^4 for element 2.

F17.12
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The global coordinate axes xy are indicated in Figure 17.12. Through the use of Equation (17.24) and Table 17.2, the element stiffness matrices are obtained as

[k]_e=\frac{E}{L} \left [ \begin{matrix} A c^2+\frac{12 I}{L^2} s^2 & \left(A-\frac{12 I}{L^2}\right) c s & -\frac{6 I}{L} s & -\left(A c^2+\frac{12 I}{L^2} s^2\right) & -\left(A-\frac{12 I}{L^2}\right) c s & -\frac{6 I}{L} s \\ & A s^2+\frac{12 I}{L^2} c^2 & \frac{6 I}{L} c & -\left(A-\frac{12 I}{L^2}\right) c s & -\left(A s^2+\frac{12 I}{L^2} c^2\right) & \frac{6 I}{L} c \\ & & 4 I & \frac{6 I}{L} s & -\frac{6 I}{L} c & 2 I \\ & & & A c^2+\frac{12 I}{L^2} s^2 & \left(A-\frac{12 I}{L^2}\right) c s & \frac{6 I}{L} s \\ & & & & A s^2+\frac{12 I}{L^2} c^2 & -\frac{6 I}{L} c \\ \text {Symmetric} & & & & & 4 I \end{matrix} \right ]      (17.24)
 

\hspace{50 pt} \begin{array}{llllll} & \hspace{11 pt}u_1 & \hspace{6 pt} \upsilon_1 & \hspace{10 pt} \theta_1 & \hspace{8 pt} u_2 & \hspace{6 pt} \upsilon_2 & \hspace{9 pt} \theta_2 \end{array} \\ [k]_1=5\left(10^5\right)\left[\begin{array}{cccccc} 0.4 & 0 & -12 & -0.4 & 0 & -12 \\ 0 & 5 & 0 & 0 & -5 & 0 \\ -12 & 0 & 480 & 12 & 0 & 240 \\ -0.4 & 0 & 12 & 0.4 & 0 & 12 \\ 0 & -5 & 0 & 0 & 5 & 0 \\ -12 & 0 & 240 & 12 & 0 & 480 \end{array}\right] \left\{\begin{array}{l} u_1 \\ \upsilon_1 \\ \theta_1 \\ u_2 \\ \upsilon_2 \\ \theta_2 \end{array}\right\}

\hspace{50 pt} \begin{array}{llllll} & \hspace{10 pt}u_2 & \hspace{5 pt} \upsilon_2 & \hspace{9 pt} \theta_2 & \hspace{6 pt} u_3 & \hspace{5 pt} \upsilon_3 & \hspace{8 pt} \theta_3 \end{array} \\ [k]_2=5\left(10^5\right)\left[\begin{array}{cccccc} 5 & 0 & 0 & -5 & 0 & 0 \\ 0 & 0.2 & 6 & 0 & -0.2 & 6 \\ 0 & 6 & 240 & 0 & -6 & 120 \\ -5 & 0 & 0 & 5 & 0 & 0 \\ 0 & -0.2 & -6 & 0 & 0.2 & -6 \\ 0 & 6 & 120 & 0 & -6 & 240 \end{array}\right] \left\{\begin{array}{l} u_2 \\ \upsilon_2 \\ \theta_2 \\ u_3 \\ \upsilon_3 \\ \theta_3 \end{array}\right\}

\hspace{73 pt} \begin{array}{llllll} u_3 & \hspace{6 pt} \upsilon_3 & \hspace{9 pt} \theta_3 & \hspace{9 pt} u_4 & \hspace{6 pt} \upsilon_4 & \hspace{8 pt} \theta_4 \end{array} \\ [k]_3=5\left(10^5\right)\left[\begin{array}{cccccc} 0.4 & 0 & -12 & -0.4 & 0 & -12 \\ 0 & 5 & 0 & 0 & -5 & 0 \\ -12 & 0 & 480 & 12 & 0 & 240 \\ -0.4 & 0 & 12 & 0.4 & 0 & 12 \\ 0 & -5 & 0 & 0 & 5 & 0 \\ -12 & 0 & 240 & 12 & 0 & 480 \end{array}\right]\left\{\begin{array}{l} u_3 \\ \upsilon _3 \\ \theta_3 \\ u_4 \\ \upsilon _4 \\ \theta_4 \end{array}\right\}

We superpose the element stiffness matrices and apply the boundary conditions:

u_1=\upsilon_1=\theta_1=0, \quad u_4=\upsilon_4=\theta_4=0

at nodes 1 and 4. This leads to the following reduced set of equations:

  \left\{\begin{array}{c} 4000 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2000 \end{array}\right\}=  5\left(10^5\right)  \\ \hspace{28 pt} \begin{array}{llllll} u_2 & \hspace{26 pt} \upsilon _2 & \hspace{5 pt} \theta_2 & \hspace{5 pt} u_3 & \hspace{3 pt} \upsilon _3 & \hspace{6 pt} \theta_3 \end{array} \\\left[\begin{array}{cccccc} 5.4 & 0 & 12 & -5 & 0 & 0 \\ & 5.2 & 6 & 0 & -0.2 & 6 \\ & & 720 & 0 & -6 & 120 \\ & & & 5.4 & 0 & 12 \\ & & & & 52 & -6 \\ \text { Symmetric } & & & & & 720 \end{array}\right]\left\{\begin{array}{l} u_2 \\ \upsilon _2 \\ \theta_2 \\ u_3 \\ \upsilon _3 \\ \theta_3 \end{array}\right\}

Solving, the nodal deflections and rotations are

  \left\{\begin{array}{l} u_2 \\ \upsilon _2 \\ \theta_2 \\ u_3 \\ \upsilon _3 \\ \theta_3 \end{array}\right\}=\left\{\begin{array}{c} 18.208 \\ 0.582 \\ -0.271 \\ 17.408 \\ -0.582 \\ -0.248 \end{array}\right\}\left(10^{-3}\right) \begin{matrix} \text{in.} \\ \text{in.} \\ \text{rad} \\ \text{in.} \\ \text{in.} \\ \text{rad} \end{matrix} 

The negative sign indicates a downward displacement or clockwise rotation.

TABLE 17.2
Data for the Frame of Figure 17.12
Element 1 2 3
\theta 90^{\circ} 0^{\circ} 270^{\circ}
c 0 1 0
s 1 0 -1
12 I / L^2 0.4 0.2 0 4
6 I / L 12 6 12
E / L 5 \times 10^5 5 \times 10^5 5 \times 10^5

Related Answered Questions