Holooly Plus Logo

Question 20.3: Figure P.20.3 shows the cross-section of a single-cell, thin......

Figure P.20.3 shows the cross-section of a single-cell, thin-walled beam with a horizontal axis of symmetry. The direct stresses are carried by the booms B_{1}  to  B_{4}, while the walls are effective only in carrying shear stresses. Assuming that the basic theory of bending is applicable, calculate the position of the shear center S. The shear modulus G is the same for all walls:

Cell area = 135, 000 mm²;  Boom areas: B_{1}=B_{4}=450\;\mathrm{mm}^{2},\;\;B_{2}=B_{3}=550\;\mathrm{mm}^{2}

\begin{array}{l l l}{{\mathrm{Wall}}}&{{\mathrm{~{Length~(mm)}}}}&{{\mathrm{~Thickness~(mm)}}}\\ {{\mathrm{~12,~34~}}}&{{\mathrm{~500~}}}&{{\mathrm{~0.8~}}}\\ {{\mathrm{~23~}}}&{{\mathrm{~580~}}}&{{\mathrm{~1.0~}}}\\ {{\mathrm{~41~}}}&{{\mathrm{~200~}}}&{{\mathrm{~1.2~}}}\end{array}

Answer:     197.2 mm to the right of the vertical through booms 2 and 3

p.20.3
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The shear center, S, lies on the horizontal axis of symmetry, the x axis. Therefore apply an arbitrary shear load, S_{y}, through S (Fig. S.20.3(a)). The internal shear flow distribution is given by Eq. (20.11), which, since I_{x y}=0,\,S_{x}=0,\,{\mathrm{and}}\,\,t_{\mathrm{D}}=0, simplifies to

q_{s}=-\left({\frac{S_{x}I_{x x}-S_{y}I_{x y}}{I_{x x}I_{y y}-I_{x y}^{2}}}\right) \left(\int_{0}^{s}t_{\mathrm{D}}x\,\mathrm{d}s+\sum\limits_{r=1}^{n}B_{r}x_{r}\right) -\left(\frac{S_{y}I_{y y}-S_{x}I_{x y}}{I_{x x}I_{y y}-I_{x y}^{2}}\right) \left(\int_{0}^{s}t_{\mathrm{DJ}}\,\mathrm{d}s+\sum\limits_{r=1}^{n}B_{r}y_{r}\right)+q_{s,0}           (20.11)

q_{s}=-{\frac{S_{y}}{I_{x x}}}\sum\limits_{r=1}^{n}B_{r}y_{r}+q_{s,0}          (i)

in which

I_{x x}=2\times450\times100^{2}+2\times550\times100^{2}=20\times10^{6}{\mathrm{mm}}^{4}

Equation (i) then becomes

q_{s}=-0.5\times10^{-7}S_{y}\sum_{r=1}^{n}B_{r}y_{r}+q_{s,0}          (ii)

The first term on the right-hand side of Eq. (ii) is the q_{b} distribution (see Eq. (17.16)). To determine q_{b}, ‘cut’ the section in the wall 23. Then

q_{s}=q_{b}+q_{s,0}              (17.16)

\begin{array}{l c r}{{q_{\mathrm{b,23}}=0}}&{{}}\\ {{q_{\mathrm{b,34}}=-0.5\times10^{-7}S_{y}\times550\times(-100)=2.75\times10^{-3}S_{y}=q_{\mathrm{b,12}}}}\\ {{q_{\mathrm{b,41}}=2.75\times10^{-3}S_{y}-0.5\times 10^{-7}S_{y}\times450\times(-100)=5.0\times10^{-3}S_{y}}}\end{array}

The value of shear flow at the ‘cut’ is obtained using Eq. (17.28), which, since G= constant, becomes

q_{s,0}=-{\frac{\oint q_{b}\;\mathrm{d}s}{\oint\mathrm{d}s}}                (17.28)

q_{s,0}=-{\frac{\oint(q_{\mathrm{b}}/t)\mathrm{d}s}{\oint\mathrm{d}s/t}}         (iii)

In Eq. (iii),

\oint{\frac{ds}{t}}={\frac{580}{1.0}}+2\times{\frac{500}{0.8}}+{\frac{200}{1.2}}=1996.7

Then, from Eq. (iii) and the above q_{b} distribution,

q_{s,0}=-{\frac{S_{y}}{1996.7}}\!\left(2\times{\frac{2.75\times10^{-3}\times500}{0.8}}+{\frac{5.0\times10^{-3}\times200}{1.2}}\right)

i.e.,

q_{s,0}=-2.14\times10^{-3}S_{y}

The complete shear flow distribution is shown in Fig. S.20.3(b).
Now taking moments about O in Fig. S.20.3(b) and using the result of Eq. (20.10),

M_{q}=2A q_{12}            (20.10)

S_{y}\xi_{S}=2\times0.61\times10^{-3}S_{y}\times500\times100+2.86\times10^{-3}S_{y}\times200\times500 -2.14\times10^{-3}S_{y}\times2(13500-500\times200)

which gives

\xi_{8}=197.2\,{\mathrm{mm}}
s.20.3.a
s.20.3.b

Related Answered Questions