Holooly Plus Logo

Question 11.SP.4: Find the discharge rate of 20°C water through the venturi tu......

Find the discharge rate of 20°C water through the venturi tube shown in Fig. S11.4 if D1​=800 mm,D2​=400 mm,Δz=2.00 m, and Rm​=150mmHg. Assume Fig. 11.19 is applicable.

s11.4
11.19
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Table A.1 for water at 20^{\circ} \mathrm{C}: \quad \nu=1.003 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}

Venturi size is 800 \mathrm{~mm} \times 400 \mathrm{~mm}=31.5 in \times 15.75 in

This is about midway between the 8 in \times 4 in and 200 in \times 100 in curves on Fig. 11.19. So, from Fig. 11.19: Maximum C \approx 0.988; assume this value. Eqs. (11.16) and (11.17):

Q=\frac{0.988 \pi(0.40 / 2)^{2}}{\sqrt{1-(400 / 800)^{4}}} \sqrt{2(9.81) 0.15\left(\frac{13.55}{1}-1\right)}=0.779 \mathrm{~m}^{3} / \mathrm{s}

V_{2}=\frac{Q}{A_{2}}=\frac{0.779}{\pi(0.40 / 2)^{2}}=6.20 \mathrm{~m} / \mathrm{s}

Eq. (7.6):                \mathbf{R}=\frac{D_{2} V_{2}}{\nu}=\frac{0.40(6.20)}{1.003 \times 10^{-6}}=2.47 \times 10^{6}

Check Fig. 11.19 for this \mathbf{R}: C=0.988. Thus Q=0.779 \mathrm{~m^3} / \mathrm{s}

 

\mathbf{R}=\frac{F_I}{F_V}=\frac{L^2 V^2 \rho}{L V \mu}=\frac{L V \rho}{\mu}=\frac{L V}{\nu}        (7.6)

Q=A_2 V_2=C A_2 V_{2 i}=\frac{C A_2}{\sqrt{1-\left(D_2 / D_1\right)^4}} \sqrt{2 g \Delta\left(\frac{p}{\gamma}+z\right)}               (11.16)

\Delta\left(\frac{p}{\gamma}+z\right)=R_m\left(\frac{s_M}{s_F}-1\right)             (11.17)

 

TABLE A.1 Physical properties of water at standard sea-level atmospheric pressure   { }^a
Temperature,  Specific weight, Density, Absolute viscosity {}^b Kinematic viscosity, {}^b Surface tension, Saturation vapor pressure, Satur’n vapor pressure head, Bulk  modulus  of  elasticity,
  \boldsymbol{T}    \boldsymbol{\gamma}    \boldsymbol{\rho}   \boldsymbol{ \mu}   \boldsymbol{\nu}    \boldsymbol{\sigma} \boldsymbol{ p_v} \boldsymbol{ p_v}/ \boldsymbol{\gamma} \boldsymbol{E_v}
  { }^{\circ} \mathbf{F}     \mathbf{l b} / \mathbf{f t}^3   \boldsymbol{ slugs/ft { }^3}   10^{-6} \mathbf{lb} \cdot \mathrm{sec} / \mathbf{ft}^2   10^{-6} \mathbf{ft}^2 / \mathbf{sec} \mathbf{lb} / \mathbf{ft} psia ft abs psi
32  { }^{\circ} \mathrm{F} 62.42 1.940 37.46 19.31 0.00518 0.0885 0.204 293,000
40  { }^{\circ} \mathrm{F} 62.43 1.940 32.29 16.64 0.00514 0.122 0.281 294,000
50  { }^{\circ} \mathrm{F} 62.41 1.940 27.35 14.10 0.00509 0.178 0.411 305,000
60  { }^{\circ} \mathrm{F} 62.37 1.938 23.59 12.17 0.00504 0.256 0.592 311,000
70  { }^{\circ} \mathrm{F} 62.30 1.936 20.50 10.59 0.00498 0.363 0.839 320,000
80  { }^{\circ} \mathrm{F} 62.22 1.934 17.99 9.30 0.00492 0.507 1.173 322,000
90  { }^{\circ} \mathrm{F} 62.11 1.931 15.95 8.26 0.00486 0.698 1.618 323,000
100  { }^{\circ} \mathrm{F} 62.00 1.927 14.24 7.39 0.00480 0.949 2.20 327,000
110  { }^{\circ} \mathrm{F} 61.86 1.923 12.84 6.67 0.00473 1.275 2.97 331,000
120  { }^{\circ} \mathrm{F} 61.71 1.918 11.68 6.09 0.00467 1.692 3.95 333,000
130  { }^{\circ} \mathrm{F} 61.55 1.913 10.69 5.58 0.00460 2.22 5.19 334,000
140  { }^{\circ} \mathrm{F} 61.38 1.908 9.81 5.14 0.00454 2.89 6.78 330,000
150  { }^{\circ} \mathrm{F} 61.20 1.902 9.05 4.76 0.00447 3.72 8.75 328,000
160  { }^{\circ} \mathrm{F} 61.00 1.896 8.38 4.42 0.00441 4.74 11.18 326,000
170  { }^{\circ} \mathrm{F} 60.80 1.890 7.80 4.13 0.00434 5.99 14.19 322,000
180  { }^{\circ} \mathrm{F} 60.58 1.883 7.26 3.85 0.00427 7.51 17.84 318,000
190  { }^{\circ} \mathrm{F} 60.36 1.876 6.78 3.62 0.00420 9.34 22.28 313,000
200  { }^{\circ} \mathrm{F} 60.12 1.868 6.37 3.41 0.00413 11.52 27.59 308,000
212  { }^{\circ} \mathrm{F} 59.83 1.860 5.93 3.19 0.00404 14.69 35.36 300,000
{ }^{\circ} \mathbf{C}   \mathbf{kN} / \mathbf{m}^3   \mathbf{~kg} / \mathbf{m}^3   \mathbf{~N} \cdot \mathbf{s} / \mathbf{m}^2   10^{-6} \mathbf{~m}^2 / \mathbf{s} \mathbf{N} / \mathbf{m}   \mathbf{kN} / \mathbf{m}^2 \text { abs }    \mathbf{m} \text { abs }    10^6 \mathbf{kN} / \mathbf{m}^2
0  { }^{\circ} \mathrm{C} 9.805 999.8 0.001781 1.785 0.0756 0.611 0.0623 2.02
5  { }^{\circ} \mathrm{C} 9.807 1000.0 0.001518 1.519 0.0749 0.872 0.0889 2.06
10  { }^{\circ} \mathrm{C} 9.804 999.7 0.001307 1.306 0.0742 1.230 0.1255 2.1
15  { }^{\circ} \mathrm{C} 9.798 999.1 0.001139 1.139 0.0735 1.710 0.1745 2.14
20  { }^{\circ} \mathrm{C} 9.789 998.2 0.001002 1.003 0.0728 2.34 0.239 2.18
25  { }^{\circ} \mathrm{C} 9.777 997.0 0.000890 0.893 0.072 3.17 0.324 2.22
30  { }^{\circ} \mathrm{C} 9.765 995.7 0.000798 0.800 0.0712 4.24 0.434 2.25
40  { }^{\circ} \mathrm{C} 9.731 992.2 0.000653 0.658 0.0696 7.38 0.758 2.28
50  { }^{\circ} \mathrm{C} 9.690 988.0 0.000547 0.553 0.0679 12.33 1.272 2.29
60  { }^{\circ} \mathrm{C} 9.642 983.2 0.000466 0.474 0.0662 19.92 2.07 2.28
70  { }^{\circ} \mathrm{C} 9.589 977.8 0.000404 0.413 0.0644 31.16 3.25 2.25
80  { }^{\circ} \mathrm{C} 9.530 971.8 0.000354 0.364 0.0626 47.34 4.97 2.2
90  { }^{\circ} \mathrm{C} 9.467 965.3 0.000315 0.326 0.0608 70.10 7.40 2.14
100  { }^{\circ} \mathrm{C} 9.399 958.4 0.000282 0.294 0.0589 101.33 10.78 2.07
{ }^a In these tables, if (for example, at 32^{\circ} \mathrm{F} ) \mu is given as 37.46 and the units are 10^{-6} \mathrm{lb} \cdot \mathrm{sec} / \mathrm{ft}^2 then \mu=37.46 \times 10^{-6} \mathrm{lb} \cdot \mathrm{sec} / \mathrm{ft}^2.
{ }^b {\text {For viscosity, see also Figs. A.1 and A.2. }}.
A1_917590
A2_917590

Related Answered Questions