Find the Fourier series representation of the function with period 2π defined by
f (t) = t² ,0 < t ≤ 2π.
As usual we sketch f (t), as shown in Figure 23.16. Here T = 2π and we shall integrate, for convenience, over the interval [0, 2π]. Using Equation (23.3) we find
a0=π1∫02πt2 dt=π1[3t3]02π=38π2Using Equation (23.4) we have
an=T2∫0Tf(t)cosT2nπt dt for n a positive integer (23.4)
Integrating by parts, we find
an=π1([t2nsinnt]02π−∫02π2tnsinnt dt)=−nπ2∫02πtsinnt dt=−nπ2([−tncosnt]02π+∫02πncosnt dt)=−nπ2(n−2πcos2nπ+[n2sinnt]02π)=n24Hence a1=4,a2=1,a3=94,… Similarly,
bn=π1∫02πt2sinnt dt=π1([−t2ncosnt]02π+∫02π2tncosnt dt)=π1(−n4π2cos2nπ+n2∫02πtcosnt dt)=π1(−n4π2+n2([ntsinnt]02π−∫02πnsinnt dt))=π1(−n4π2−n22[−ncosnt]02π)=−n4πThus b1=−4π,b2=−2π,…. Finally, the required Fourier series representation is given by
f(t)=34π2+(4cost+cos2t+94cos3t+⋯)−π(4sint+2sin2t+34sin3t+⋯)