Question 23.15: Find the Fourier series representation of the function with ......

Find the Fourier series representation of the function with period 2π defined by

f (t) = t² ,0 < t ≤ 2π.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

As usual we sketch f (t), as shown in Figure 23.16. Here T = 2π and we shall integrate, for convenience, over the interval [0, 2π]. Using Equation (23.3) we find

a0=1π02πt2 dt=1π[t33]02π=8π23a_0=\frac{1}{\pi} \int_0^{2 \pi} t^2 \mathrm{~d} t=\frac{1}{\pi}\left[\frac{t^3}{3}\right]_0^{2 \pi}=\frac{8 \pi^2}{3}

Using Equation (23.4) we have
an=2T0Tf(t)cos2nπtT dt for n a positive integer a_n=\frac{2}{T} \int_0^T f(t) \cos \frac{2 n \pi t}{T} \mathrm{~d} t \quad \text { for } n \text { a positive integer }          (23.4)

an=1π02πt2cosnt dta_n=\frac{1}{\pi} \int_0^{2 \pi} t^2 \cos n t \mathrm{~d} t

Integrating by parts, we find

an=1π([t2sinntn]02π02π2tsinntn dt)=2nπ02πtsinnt dt=2nπ([tcosntn]02π+02πcosntn dt)=2nπ(2πcos2nπn+[sinntn2]02π)=4n2\begin{aligned} a_n & =\frac{1}{\pi}\left(\left[t^2 \frac{\sin n t}{n}\right]_0^{2 \pi}-\int_0^{2 \pi} 2 t \frac{\sin n t}{n} \mathrm{~d} t\right) \\ & =-\frac{2}{n \pi} \int_0^{2 \pi} t \sin n t \mathrm{~d} t \\ & =-\frac{2}{n \pi}\left(\left[-t \frac{\cos n t}{n}\right]_0^{2 \pi}+\int_0^{2 \pi} \frac{\cos n t}{n} \mathrm{~d} t\right) \\ & =-\frac{2}{n \pi}\left(\frac{-2 \pi \cos 2 n \pi}{n}+\left[\frac{\sin n t}{n^2}\right]_0^{2 \pi}\right) \\ & =\frac{4}{n^2} \end{aligned}

Hence a1=4,a2=1,a3=49,a_1=4, a_2=1, a_3=\frac{4}{9}, \ldots Similarly,

bn=1π02πt2sinnt dt=1π([t2cosntn]02π+02π2tcosntn dt)=1π(4π2ncos2nπ+2n02πtcosnt dt)=1π(4π2n+2n([tsinntn]02π02πsinntn dt))=1π(4π2n2n2[cosntn]02π)=4πn\begin{aligned} b_n & =\frac{1}{\pi} \int_0^{2 \pi} t^2 \sin n t \mathrm{~d} t \\ & =\frac{1}{\pi}\left(\left[-t^2 \frac{\cos n t}{n}\right]_0^{2 \pi}+\int_0^{2 \pi} 2 t \frac{\cos n t}{n} \mathrm{~d} t\right) \\ & =\frac{1}{\pi}\left(-\frac{4 \pi^2}{n} \cos 2 n \pi+\frac{2}{n} \int_0^{2 \pi} t \cos n t \mathrm{~d} t\right) \\ & =\frac{1}{\pi}\left(-\frac{4 \pi^2}{n}+\frac{2}{n}\left(\left[\frac{t \sin n t}{n}\right]_0^{2 \pi}-\int_0^{2 \pi} \frac{\sin n t}{n} \mathrm{~d} t\right)\right) \\ & =\frac{1}{\pi}\left(-\frac{4 \pi^2}{n}-\frac{2}{n^2}\left[-\frac{\cos n t}{n}\right]_0^{2 \pi}\right) \\ & =-\frac{4 \pi}{n} \end{aligned}

Thus b1=4π,b2=2π,.b_1=-4 \pi, b_2=-2 \pi, \ldots . Finally, the required Fourier series representation is given by

f(t)=4π23+(4cost+cos2t+49cos3t+)π(4sint+2sin2t+4sin3t3+)\begin{aligned} f(t)= & \frac{4 \pi^2}{3}+\left(4 \cos t+\cos 2 t+\frac{4}{9} \cos 3 t+\cdots\right) \\ & -\pi\left(4 \sin t+2 \sin 2 t+\frac{4 \sin 3 t}{3}+\cdots\right) \end{aligned}
1e827a49-b5b2-4fa8-a4fb-e5656f2e5866

Related Answered Questions

Question: 23.22

Verified Answer:

For the capacitor, v_{\mathrm{o}}=\frac{i}{...
Question: 23.16

Verified Answer:

Assume that f (t) can be expressed in the form [la...
Question: 23.14

Verified Answer:

As usual we sketch f (t) first as this often provi...