Holooly Plus Logo

Question 17.2: Finding K for Reactions Multiplied by a Common Factor or Rev......

Finding K for Reactions Multiplied by a Common Factor or Reversed and for an Overall Reaction

Problem A chemist wants to find K_c for the following reaction at 700 K:

               2NH_3(g)  +  3I_2(g)  \xrightleftharpoons[]{}  6HI(g)  +  N_2(g)            K_c  =  ?

Use the following data at 700 K to find the unknown Kc:

(1) N_2(g)  +  3H_2(g)  \xrightleftharpoons[]{}  2NH_3(g)            K_{c1}  =  0.343

(2) H_2(g)  +  I_2(g) \xrightleftharpoons[]{}  2HI(g)               K_{c2}  =  54

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Plan We must manipulate reactions (1) and (2) so that they add together to give the target reaction. Reaction (1) must be reversed; the new equilibrium constant (K^′_{c1}) is the reciprocal of K_{c1}. Reaction (2) must be multiplied by 3; the new equilibrium constant (K^′_{c2}) is K_{c2} raised to the third power. We then add the two manipulated reactions and multiply their K_c values to obtain the overall K_c.

Solution Reaction (1) must be reversed since 2NH_3 is a reactant in the target reaction; the K_c value of the reversed reaction is the reciprocal of the original K_c:

               (1)      2NH_3(g)  \xrightleftharpoons[]{}  N_2(g)  +  3H_2(g)            K^′_{c1}  =  \frac{1}{0.343}  =  2.92

Reaction (2) must be multiplied by 3 (in the target reaction I_2 has a coefficient of 3 and HI has a coefficient of 6) so the new K_c value equals the original K_c value raised to the third power:

               (2)      3H_2(g )  +  3I_2(g)  \xrightleftharpoons[]{}  6HI(g)           K^′_{c2}  =  543  =  1.6×10^5

Adding the two reactions (cancelling common terms):

              (1)     2NH_3(g)  \xrightleftharpoons[]{}  N_2(g)  +  \cancel{3H_2(g)}                                    K^′_{c1}  =  2.92
               (2)     \cancel{3H_2(g)}  +  3I_2(g)  \xrightleftharpoons[]{}  6HI(g)                     K^′_{c2}  =  1.6×10^5
             \overline{2NH_3(g)  +  3I_2(g) \xrightleftharpoons[]{}  N_2(g)  +  6HI(g)}

Multiplying the individual reaction quotients and calculating the overall K_c:

              Q^′_{c1}  ×  Q^′_{c2}  =  \frac{[N_2] \cancel{[H_2]^3}}{[NH_3]^2}  ×  \frac{[HI]^6}{\cancel{[H_2]^3}[I_2]^3}  =  \frac{[N_2] [HI]^6}{[NH_3]^2[I_2]^3}  =  Q_{\text{c(overall)}}
              K_{\text{c(overall)}}  =  K^′_{c1}  ×  K^′_{c2}  =  (2.92)(1.6×10^5)  =  4.7×10^5

Check Round off and check the calculation of the overall K_c value:
              K_c  ≈  (3)(2×10^5)  =  6×10^5

Related Answered Questions