Holooly Plus Logo

Question 17.10: Predicting Reaction Direction and Calculating Equilibrium Co......

Predicting Reaction Direction and Calculating Equilibrium Concentrations

Problem The research and development unit of a chemical company is studying the reaction of CH_4 and H_2S, two components of natural gas:

                 CH_4(g)  +  2H_2S(g) \xrightleftharpoons[]  CS_2(g)  +  4H_2(g)

In one experiment, 1.00 mol of CH_4, 1.00 mol of CS_2, 2.00 mol of H_2S, and 2.00 mol of H_2 are mixed in a 250.-mL vessel at 960°C. At this temperature, K_c = 0.036.

(a) In which direction will the reaction proceed to reach equilibrium?
(b) If [CH_4] = 5.56 M at equilibrium, what are the equilibrium concentrations of the other substances?

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Plan (a) To find the direction, we convert the given initial amounts and volume (0.250 L) to concentrations, calculate Q_c, and compare it with K_c. (b) Based on this  information, we determine the sign of each concentration change for the reaction table and then use the known [CH_4] at equilibrium (5.56 M) to determine x and the other equilibrium concentrations.
Solution (a) Calculating the initial concentrations:
                 [CH_4]  =  \frac{1.00\text{ mol}}{0.250  L}  =  4.00  M
Similarly, [H_2S]  =  8.00  M,  [CS_2]  =  4.00  M, and [H_2]  =  8.00  M.
Calculating the value of Q_c:

                 Q_c  =  \frac{[CS_2][H_2]^4}{[CH_4][H_2S]^2}  =  \frac{(4.00)(8.00)^4}{(4.00)(8.00)^2}  =  64.0
Comparing Q_c and K_c:  Q_c  >  K_c (64.0 > 0.036), so the reaction proceeds to the left. Therefore, concentrations of reactants increase (+x) and those of products decrease (–x).
(b) Setting up a reaction table (Table 1), with x  =  [CS_2] that reacts, which equals [CH_4] that forms:

Solving for x: At equilibrium,
                 [CH_4]  =  5.56  M  =  4.00  M  +  x\text{        so       }x  =  1.56  M
Thus,      [H_2S]  =  8.00  M  +  2x  = 8.00  M  +  2(1.56  M)  =  11.12  M
                 [CS_2]  =  4.00  M  −  x  =  4.00  M  −  1.56  M  =  2.44  M
                 [H_2]  =  8.00  M  −  4x  =  8.00  M  −  4 (1.56  M)  =  1.76  M
Check The comparison of Q_c and K_c showed the reaction proceeding to the left. The given data from part (b) confirm this because [CH_4] increases from 4.00 M to 5.56 M during the reaction. As always, you should check that the concentrations give the known K_c:
                 \frac{(2.44)(1.76)^4}{(5.56)(11.12)^2}  =  0.0341,\text{ which is close to }0.036

Table 1

Concentration (M) \mathbf{CH_4(g)      +      2H_2S(g)      \xrightleftharpoons[]{}       CS_2(g)       +       4H_2(g)}
Initial 4.00                            8.00                       4.00                        8.00
Change +x                              +2x                              –x                               –4x
Equilibrium 4.00 + x                  8.00 + 2x                   4.00 – x                    8.00 – 4x

Related Answered Questions