Holooly Plus Logo

Question 17.5.1: For CO molecule the rotational spectral lines appear at 3.84......

For CO molecule the rotational spectral lines appear at 3.8424 \mathrm{cm}^{–1} for the transition J = 0 to J = 1. Calculate the moment of inertia and bond distance for the molecule.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

We know that

\bar{v}_{J \rightarrow(J+1)}=\bar{v}_{0 \rightarrow 1}=2 B

Therefore 2 \mathrm{~B}=3.8424 \mathrm{~cm}^{-1}

or \mathrm{B}=1.9212 \mathrm{~cm}^{-1}

Moment of inertial I:

\begin{array}{l}I=\frac{h}{8 \pi^{2} B c}=\frac{6.624 \times 10^{-27}}{8 \times 3.14 \times 3.14 \times 1.9212 \times 3 \times 10^{10}}\\  \\I=1.4567 \times 10^{-39} \mathrm{~g} \mathrm{~cm}^{2} \\  \\=1.4567 \times 10^{-46} \mathrm{~kg} \mathrm{~m}^{2}\\  \\\text { reduced mass of } \mathrm{CO} \text {, } \\  \\\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}=\frac{\frac{12}{N_{A}} \times \frac{16}{N_{A}}}{\frac{12}{N_{A}}+\frac{16}{N_{A}}}=\frac{12 \times 16}{N_{A}(12+16)}\\  \\\text { where } N_{A}=\text { Avogadros number } \\  \\\mu=\frac{12 \times 16}{6.023 \times 10^{23} \times 28}=1.14 \times 10^{-23} \mathrm{~g} \mathrm{~mol}^{-1}=1.14 \times 10^{-26} \mathrm{~kg} \mathrm{~mol}^{-1}\\  \\\mathrm{I}=\mu r^{2} \text { or } r=\sqrt{\frac{I}{\mu}}\\  \\\text { Bond distance } r=\sqrt{\frac{1.4567 \times 10^{-46}}{1.14 \times 10^{-26}}}=1.13 \times 10^{-8} \mathrm{~cm}\\  \\\quad \quad \quad \quad \quad \qquad=1.13 \times 10^{-10} \mathrm{~m}=1.131 \mathrm{~A}^{\circ}=113  \mathrm{pm} \end{array}

Related Answered Questions

Question: 17.4.4

Verified Answer:

• A band at 3080 \mathrm{cm}^{–1} d...
Question: 17.4.3

Verified Answer:

CH_3COOH spectrum will have the f...