For the five storey building example
F(t) = Ff (t); < F >=< 0 0 – 1 1 2>
The system is undamped. Compute only the steady state response.
f(t)=f_0 ~\sin \omega t ; \frac{\omega}{\omega_1}=\frac{T_1}{T}=0.75
D_n(t)=\frac{f_0}{\omega_n^2} R_{d n}~ \sin~ \omega t
R_{d n}=\frac{1}{1~-~\left(\omega / \omega_n\right)^2}
R_{d n} \text { may be }+ \text { ve or }- \text { ve }
R_n(t)=R^{s t}~ \bar{R}_n ~f_0~ R_{d n}~ \sin \omega t
R(t)=f_0 ~R^{s t}~\left(\bar{R}_n R_{d n}\right)~ \sin \omega t
Maximum value
R_0=f_0~ R^{s t}\left(\bar{R}_n~ R_{d n}\right)
V_b^{s t}=2 ; V_{b 0}=f_0~ V_b^{s t}~ \Sigma ~\bar{V}_{b n} ~R_{d n}
\frac{V_{b 0}}{f_0}=V_b^{s t}~ \sum \bar{V}_{b n}~ R_{d n}
For the five storey building {F} is resolved into model components as shown in Fig. 18.10. For example for mode 1 \omega_1=0.2439 .
R_{d 1}=\frac{1}{1~-~\left(\frac{\omega}{\omega_1}\right)^2}=\frac{1}{1~-~\left(\frac{0.1829}{0.2439}\right)^2}=2.284
\frac{V_{b 0}}{F_0}=\frac{5.6}{2}=2.8 \text { (See Table 18.2) }
If we include ‘p’ modes
\frac{V_{b 0}}{f_0}=1+\sum\limits_{n=1}^p \bar{V}_{b n}~ R_{d n}-\sum\limits_{n=1}^N \bar{V}_{b n}
The calculations are shown in Table 18.2.
Table 18.2 Dynamic base shear calculation | ||||
Mode | \omega_n | \bar{V}_b | R_d | \bar{V}_b ~R_d |
1 | 0.2439 | 2.7486 | 2.284 | 6.28 |
2 | 0.6689 | –1.217 | 1.0808 | –1.31 |
3 | 1 | 0.6 | 1.0346 | 0.62 |
4 | 1.286 | –0.1305 | 1.0206 | 0.13 |
5 | 1.685 | -0.0012 | 1.0119 | –0.12 |
∑ | 5.6 |