Holooly Plus Logo

Question 24.7: Given that when f(t) = {1 |t| ≤ 1 0 |t| > 1 F(ω) = 2sin ω......

Given that when  f(t)={\left\{\begin{array}{l l}{1}&{|t|\leqslant1}\\ {0}&{|t|\gt 1}\end{array}\right.},F(\omega)={\frac{2\sin\omega}{\omega}},  apply the second shift theorem to find the Fourier transform of

g(t)={\left\{\begin{array}{l l}{1}&{1\leqslant t\leqslant3}\\ {0}&{{\mathrm{otherwise}}}\end{array}\right.}

Verify your result directly.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The function g(t) is depicted in Figure 24.3. Clearly g(t) is the function f (t) translated 2 units to the right, that is g(t) = f (t−2). Now  F(\omega)={\frac{2\sin\omega}{\omega}}  is the Fourier transform of f (t). Therefore, by the second shift theorem

{\mathcal{F}}\{g(t)\}={\mathcal{F}}\{f(t-2)\}=\mathrm{e}^{-2{\mathfrak{j}}\omega}F(\omega)={\frac{2\mathrm{e}^{-2{\mathfrak{j}}\omega}\sin\omega}{\omega}}

To verify this result directly we must evaluate

{\mathcal{F}}\{g(t)\}=\int_{-\infty}^{\infty}g(t)\,\mathrm{e}^{-\mathrm{j}\omega t}\,\mathrm{d}t=\int_{1}^{3}\mathrm{e}^{-\mathrm{j}\omega t}\,\mathrm{d}t=\left[{\frac{\mathrm{e}^{-\mathrm{j}\omega t}}{-\mathrm{j}\omega}}\right]_{1}^{3}

={\frac{\mathrm{e}^{-3\omega}-\mathrm{e}^{-\mathrm{j}\omega}}{-\mathrm{j}\omega}}=\mathrm{e}^{-2\mathrm{j}\omega}{\bigg(}{\frac{\mathrm{e}^{-\mathrm{j}\omega}-\mathrm{e}^{\mathrm{j}\omega}}{-\mathrm{j}\omega}}{\bigg)}

={\frac{2\mathrm{e}^{-2\mathrm{j}\omega}\sin\omega}{\omega}}

as required.

Screenshot 2023-06-06 044338

Related Answered Questions

Question: 24.14

Verified Answer:

(a) Either by integration, or from Table 21.1, we ...
Question: 24.13

Verified Answer:

Subtracting the previous expressions for  {...
Question: 24.12

Verified Answer:

We have f(t) = δ(t − a),  F(\omega)=\mathrm...
Question: 24.11

Verified Answer:

We have f(t) = δ(t) and F(ω) = 1. The duality prin...
Question: 24.10

Verified Answer:

By definition {\mathcal{F}}\{\delta(t-a)\}=...