Holooly Plus Logo

Question 24.2: Use Equation (24.3) to find the Fourier integral representat......

Use Equation (24.3) to find the Fourier integral representation of the  function defined by

\begin{array}{l}{{f(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\!F(\omega)\,\mathrm{e}^{\mathrm{j}\omega t} \mathrm{d}\omega}}\end{array}                            (24.3)

f(t)={\left\{\begin{array}{l l}{1}&{-1\leqslant t\leqslant 1}\\ {0}&{|t|\gt 1}\end{array}\right.}

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Using Equation (24.3) we find

f(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)\,\mathrm{e}^{\mathrm{j}\omega t}\,\mathrm{d}\omega

where

F(\omega)=\int_{-\infty}^{\infty}f(t)\,\mathrm{e}^{-\mathrm{j}\omega t}\,\mathrm{d}t

=\int_{-1}^{1}1\mathrm{e}^{-\mathrm{j}\omega t}\,\mathrm{d}t                since f (t ) is zero outside [−1, 1]

=\left[{\frac{\mathrm{e}^{-\mathrm{j}\omega t}}{-\mathrm{j}\omega}}\right]_{-1}^{1}

=\frac{{\bf e}^{-\mathrm{j}\omega}-{\bf e}^{\mathrm{j}\omega}}{-\mathrm{j}\omega}

=\frac{\mathrm{e}^{\mathrm{j}\omega}-\mathrm{e}^{-\mathrm{j}\omega}}{\mathrm{j}\omega}

Using Euler’s relation (Section 9.6)

\sin\theta={\frac{\mathrm{e}^{\mathrm{j}\theta}-\mathrm{e}^{-\mathrm{j}\theta}}{2\mathrm{j}}}

we find

F(\omega)={\frac{2\sin\omega}{\omega}}

so that

f(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{2\sin\omega}{\omega}\,\mathrm{e}^{\mathrm{j}\omega t}\,\mathrm{d}\omega

is the required integral representation. Note that  F(\omega)={\frac{2\sin\omega}{\omega}}  is the Fourier transform of f (t ). The function  \frac{\sin{\omega}}{\omega}  occurs frequently and is often referred to as the sinc function (see Section 3.5).

Related Answered Questions

Question: 24.14

Verified Answer:

(a) Either by integration, or from Table 21.1, we ...
Question: 24.13

Verified Answer:

Subtracting the previous expressions for  {...
Question: 24.12

Verified Answer:

We have f(t) = δ(t − a),  F(\omega)=\mathrm...
Question: 24.11

Verified Answer:

We have f(t) = δ(t) and F(ω) = 1. The duality prin...
Question: 24.10

Verified Answer:

By definition {\mathcal{F}}\{\delta(t-a)\}=...