Holooly Plus Logo

Question 13.10: In a countercurrent packed column, n-butanol flows down at a......

In a countercurrent packed column, n-butanol flows down at a rate of 0.25 kg/m² s and is cooled from 330 to 295 K. Air at 290 K, initially free of n-butanol vapour, is passed up the column at the rate of 0.7 m³/m² s.

Calculate the required height of tower and the condition of the exit air.

Data:

Mass transfer coefficient per unit volume, h_{D}a = 0.1 s^{-1}

Psychrometric ratio, \frac{h_{G}}{h_{D}\rho _{A}s}= 2.34

Heat transfer coefficients, h_{L} = 3h_{G}

Latent heat of vaporisation of n-butanol, λ = 590 kJ/kg
Specific heat of liquid n-butanol, C_{L} = 2.5 kJ/kg K
Humid heat of gas, s = 1.05 kJ/kg K

Temperature (K) Vapour pressure of butanol (kN/m²)
295 0.59
300 0.86
305 1.27
310 1.75
315 2.48
320 3.32
325 4.49
330 5.99
335 7.89
340 10.36
345 14.97
350 17.50
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The first stage is to calculate the enthalpy of the saturated gas by way of the saturated humidity, \mathscr{H}_{0} given by:

\mathscr{H} _{0}={\frac{P_{w0}}{P-P_{w0}}}{\frac{M_{w}}{M_{A}}}={\frac{P_{w0}}{(101.3-P_{w0})}}\left({\frac{74}{29}}\right)

The enthalpy is then:

H_{f}=\frac{1}{(1+\mathscr{H}_{0})} x 1.001(\theta _{f} – 273) + \mathscr{H}_{0}[2.5(\theta _{f} – 273) + 590] kJ/kg
where 1.001 kJ/kg K is the specific heat of dry air.
Thus: H_{f}=\frac{1.001\theta_{f}-273.27}{(1+\mathscr{H}_{0})}+\mathscr{H}_{0}(2.5\theta_{f}-92.5) kJ/kg moist air
The results of this calculation are presented in the following table and H_{f} is plotted against \theta _{f} in Figure 13.21.
The modified enthalpy at saturation H^{\prime }_{f} is given by:

H_{f}^{\prime}=\frac{(1.001\theta_{f}-273.27)}{(1+\mathscr{H}_{0})}+\mathscr{H}_{0}[2.5(\theta_{f}-273)+\lambda^{\prime}]

where from equation 13.70: λ’ = λ/b = (590/2.34) or 252 kJ/kg

b={\frac{\lambda}{\lambda^{\prime}}}                  (13.70)

H_{f}^{\prime}\,=\,{\frac{(1.001\theta_{f}-273.27)}{(1+\mathscr{H}_{0})}}\,+\mathscr{H}_{0}(2.5\theta_{f}\,-\,430.5) kJ/kg moist air

These results are also given in the following Table and plotted as H^{\prime }_{f} against \theta _{f} in Figure 13.21.

The bottom of the operating line (point a) has coordinates, \theta _{L1} = 295 K and H_{G1}, where:
H_{G1} = 1.05(290 – 273) = 17.9 kJ/kg.
At a mean temperature of, say, 310 K, the density of air is:

\left({\frac{29}{22.4}}\right)\left({\frac{273}{310}}\right)=1.140{\mathrm{~kg/m}}^{3}

and: G’ = (0.70 x 1.140) = 0.798 kg/m² s
Thus, the slope of the operating line becomes:

{\frac{L^{\prime}C_{L}}{G^{\prime}}}\,=\,{\frac{(0.25\times2.5)}{0.798}}\,=\,0.783 kJ/kg K

and this is drawn in as AB in Figure 13.22 and at θ_{L2} = 330 K, H_{G2} = 46 kJ/kg.

From equation 13.77: H^{\prime}_{G} = [H_{G} + (b – 1)s(\theta _{G}\theta _{0})]/b

H_{G}^{\prime}={\frac{1}{b}}[H_{G}+(b-1)s(\theta_{G}-\theta_{0})]                  (13.77)

H_{G1}^{'}={\frac{17.9+{(2.34-1)}1.05{(290-273)}}{2.34}}=17.87\ \mathrm{kJ/kg}

Point a coincides with the bottom of the column.

A line is drawn through a of slope – \frac{h_{L}}{h_{D}\rho b}=-\left(\frac{3h_{G}}{h_{D}\rho b}\right)\cdot\left(\frac{h_{D}\rho s}{h_{G}}\right)

= -3s   = -3.15 kJ/kg

This line meets curve RS at c (\theta _{f1}, H_{f1}^{\prime }) to give the interface conditions at the bottom of the column. The corresponding air enthalpy is given by point C whose co-ordinates are:
\theta _{f1} = 293 K          H_{f1} = 29.0 kJ/kg
The difference between the ordinates of c and a gives the driving force in terms of the modified enthalpy at the bottom of the column, or:

(H_{f1}^{\prime}-H_{G1}^{\prime})=(23.9-17.9)=6.0\;{\mathrm{kJ/kg}}

A similar construction is made at other points along the operating line with the results shown in the following table.

from which:

\int_{H_{G1}}^{H_{G2}}\frac{\mathrm{d}H_{G}}{H_{f}^{\prime}-H_{G}^{\prime}}=2.379

Substituting in equation 13.78:

\int_{H_{G1}}^{H_{G2}}\frac{\mathrm{d}H_{G}}{(H_{f}^{\prime}-H_{G}^{\prime})}=\frac{b h_{D}a\rho}{G^{\prime}}z                        (13.78)

\frac{b h_{D}\rho a z}{G^{\prime}}=2.379

and: z={\frac{(2.379\times0.798)}{(2.34\times0.1)}} = \underline{\underline{8.1\ m}}

It remains to evaluate the change in gas conditions.
Point e, (\theta _{G1} = 290 K, H_{G1} = 17.9 kJ/kg) represents the condition of the inlet gas. ec is now drawn in, and from equation 13.75, this represents dH_{G}/d\theta _{G}. As for the air-water system, this construction is continued until the gas enthalpy reaches H_{G2}. The final point is given by D at which \underline{\underline{\theta_{G2}=308\ K}}.

\frac{(H_{G}^{\prime}-H_{f}^{\prime})}{(\theta_{G}-\theta_{f})}=\frac{\mathrm{d}H_{G}}{\mathrm{d}\theta_{G}} (cf. equation 13.51)                       (13.75)

\frac{H_{G}-H_{f}}{\theta_{G}-\theta_{f}}=\frac{\mathrm{d}H_{G}}{\mathrm{d}\theta_{G}}                     (13.51)

It is fortuitous that, in this problem, H^{\prime }_{G} = H_{G}. This is not always the case and reference should be made to Section 13.7 for elaboration of this point.

\theta _{f}
(k)
P_{w0}
(kN/m²)
\mathscr{H} _{0}
(kg/kg)
(1.001\theta _{f}-273.27)/(1+\mathscr{H} _{0})
(kJ/kg)
\mathscr{H} _{0}(2.5\theta _{f}-92.5)
(kJ/kg)
H_{f}
(kJ/kg)
\mathscr{H} _{0}(2.5\theta _{f}-430.5)
(kJ/kg)
H_{f}^{\prime }
(kJ/kg)
295 0.59 0.0149 21.70 9.61 31.31 4.57 26.28
300 0.86 0.0218 24.45 14.33 40.78 6.97 33.42
305 1.27 0.0324 31.03 21.71 52.74 10.76 41.79
310 1.75 0.0448 35.45 30.58 66.03 15.43 50.88
315 2.48 0.0640 39.52 44.48 84.00 22.85 62.37
320 3.32 0.0864 43.31 61.13 104.44 31.92 75.23
325 4.49 0.1183 46.55 85.18 131.73 45.19 91.74
330 5.99 0.1603 49.18 117.42 166.60 63.23 112.41
335 7.89 0.2154 51.07 160.47 211.54 87.67 138.73
340 10.36 0.2905 51.97 220.05 272.02 121.87 173.83
345 14.97 0.4422 49.98 340.49 390.47 191.03 241.01
350 17.50 0.5325 50.30 416.68 466.98 236.70 287.00
\theta _{f}
(K)
H_{G}
(kJ/kg)
H^{\prime }_{G}
(kJ/kg)
H^{\prime }_{f}
(kJ/kg)
(H^{\prime }_{f}H^{\prime }_{G})
(kJ/kg)
1/(H^{\prime }_{f}H^{\prime }_{G})
(kg/kJ)
Mean value in interval Interval Value of integral over interval
295 17.9 17.9 23.9 6.0 0.167
300 22.0 22.0 29.0 7.0 0.143 0.155 4.1 0.636
305 26.0 26.0 35.3 9.3 0.108 0.126 4.0 0.504
310 30.0 30.0 42.1 12.1 0.083 0.096 4.0 0.384
315 34.0 34.0 50.0 16.0 0.063 0.073 4.0 0.292
320 38.1 38.1 57.9 19.8 0.051 0.057 4.1 0.234
325 42.0 42.0 66.7 24.7 0.041 0.046 3.9 0.179
330 46.0 46.0 75.8 29.8 0.034 0.0375 4.0 0.150
Value of integral = 2.379
13.21
13.22

Related Answered Questions