Question 10.6.Q2: In Prob. 220 we determined general expressions for the numbe......

In Prob. 220 we determined general expressions for the number N(t) as well as activity \mathcal{A}(t) of the parent P, daughter D, granddaughter G, and great granddaughter GG nuclei present at time t > 0 for radioactive decay series. The initial conditions at time t = 0 were that the initial number of parent nuclei N_1(t = 0) was N_1(0) and no other descendants were present at t = 0.
In this problem we will assume a specific radioactive decay series, starting with initial parent activity \mathcal{A}_1(0) = 2.5 mCi and zero initial activity of all other descendants. The half-lives of first four generations of descendants are as follows: \left(t_{1/2}\right)_1 = 1.5\ d,\ \left(t_{1/2}\right)_2 = 0.2\ d,\ \left(t_{1/2}\right)_3 = 3.5 d, and \left(t_{1/2}\right)_1 = 1.3\ d. For this radioactive decay series:

(a) Determine expressions for the number of parent N_1(t), daughter N_2(t), granddaughter N_3(t), and great granddaughter N_4(t) nuclei as a function of time t.

(b) Determine expressions for the activity of the parent \mathcal{A}_1(t), daughter \mathcal{A}_2(t), granddaughter \mathcal{A}_3(t), and great granddaughter \mathcal{A}_4(t) as a function of time t.

(c) Calculate N_1(t),\ N_2(t),\ N_3(t),\ and\ N_4(t) for time t of 2.5 d.

(d) Calculate A_1(t),\ A_2(t),\ A_3(t),\ and\ A_4(t) for time t of 2.5 d.

(e) Enter results calculated in (c) onto curves in Fig. 10.9(A) which show N_1(t),\ N_2(t),\ N_3(t),\ and\ N_4(t) against time t.

(f) Enter results calculated in (c) onto curves in Fig. 10.9(B) which show \mathcal{A}_1(t),\ \mathcal{A}_2(t),\ \mathcal{A}_3(t),\ and\ \mathcal{A}_4(t) against time t.

(g) Identify the curves in Figs. 10.9(A) and 10.9(B).

Screenshot 2023-07-19 081102
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

In Prob. 220 the Bateman equation and Bateman constants were consolidated into one general equation which was used to determine general expressions for the number of nuclei and activity for the first four generations of a radioactive decay series: P → D → G → GG. The general Bateman equation is written as follows

N_n(t)=\sum_{m=1}^n C_m e^{-\lambda_m t}=N_1(0) \sum_{m=1}^n\left[\frac{\prod_{i=1}^{n-1} \lambda_i}{\prod_{\substack{i=1 \\ i \neq m}}^n\left(\lambda_i-\lambda_m\right)}\right] e^{-\lambda_m t} .         (10.156)

(1) The general expressions for the number of nuclei N_1(t),\ N_2(t),\ N_3(t),\ and\ N_4(t) were given as follows with N_1(0) the initial number of parent nuclei and λ_i the decay constant of generation i.

N_1(t)=N_1(0) e^{-\lambda_1 t},          (10.157)

N_2(t)=N_1(0) \frac{\lambda_1}{\lambda_2-\lambda_1}\left[e^{-\lambda_1 t}-e^{-\lambda_2 t}\right]          (10.158)

\begin{aligned} N_3(t)= & N_1(0) \lambda_1 \lambda_2\left[\frac{e^{-\lambda_1 t}}{\left(\lambda_2-\lambda_1\right)\left(\lambda_3-\lambda_1\right)}+\frac{e^{-\lambda_2 t}}{\left(\lambda_1-\lambda_2\right)\left(\lambda_3-\lambda_2\right)}\right. \\ & \left.+\frac{e^{-\lambda_3 t}}{\left(\lambda_1-\lambda_3\right)\left(\lambda_2-\lambda_3\right)}\right],\quad (10.159) \end{aligned}
\begin{aligned} N_4(t)= & N_1(0) \lambda_1 \lambda_2 \lambda_3\left[\frac{e^{-\lambda_1 t}}{\left(\lambda_2-\lambda_1\right)\left(\lambda_3-\lambda_1\right)\left(\lambda_4-\lambda_1\right)}\right. \\ & +\frac{e^{-\lambda_2 t}}{\left(\lambda_1-\lambda_2\right)\left(\lambda_3-\lambda_2\right)\left(\lambda_4-\lambda_2\right)}+\frac{e^{-\lambda_3 t}}{\left(\lambda_1-\lambda_3\right)\left(\lambda_2-\lambda_3\right)\left(\lambda_4-\lambda_3\right)} \end{aligned}\\ \left.+\frac{e^{-\lambda_4 t}}{\left(\lambda_1-\lambda_4\right)\left(\lambda_2-\lambda_4\right)\left(\lambda_3-\lambda_4\right)}\right]\quad (10.160)

(2) The general expressions for activities \mathcal{A}_1(t),\ \mathcal{A}_2(t),\ \mathcal{A}_3(t),\ and\ \mathcal{A}_4(t) were given as follows with \mathcal{A}_1(0), the initial activity of the parent radionuclide

\mathcal{A}_1(t)=\lambda_1 N_1(t)=\mathcal{A}(0) e^{-\lambda_1 t}          (10.161)

\mathcal{A}_2(t)=\lambda_2 N_2(t)=\mathcal{A}_1(0) \frac{\lambda_2}{\lambda_2-\lambda_1}\left[e^{-\lambda_1 t}-e^{-\lambda_2 t}\right],         (10.162)

\begin{aligned} \mathcal{A}_3(t)= & \lambda_3 N_3(t)=N_1(0) \lambda_1 \lambda_2 \lambda_3\left[\frac{e^{-\lambda_1 t}}{\left(\lambda_2-\lambda_1\right)\left(\lambda_3-\lambda_1\right)}+\frac{e^{-\lambda_2 t}}{\left(\lambda_1-\lambda_2\right)\left(\lambda_3-\lambda_2\right)}\right. \\ & \left.+\frac{e^{-\lambda_3 t}}{\left(\lambda_1-\lambda_3\right)\left(\lambda_2-\lambda_3\right)}\right]\quad (10.163) \end{aligned}
\begin{aligned} \mathcal{A}_4(t)= & \lambda_4 N_4(t) \\ = & N_1(0) \lambda_1 \lambda_2 \lambda_3 \lambda_4\left[\frac{e^{-\lambda_1 t}}{\left(\lambda_2-\lambda_1\right)\left(\lambda_3-\lambda_1\right)\left(\lambda_4-\lambda_1\right)}\right. \\ & +\frac{e^{-\lambda_2 t}}{\left(\lambda_1-\lambda_2\right)\left(\lambda_3-\lambda_2\right)\left(\lambda_4-\lambda_2\right)}+\frac{e^{-\lambda_3 t}}{\left(\lambda_1-\lambda_3\right)\left(\lambda_2-\lambda_3\right)\left(\lambda_4-\lambda_3\right)} \\ & \left.+\frac{e^{-\lambda_4 t}}{\left(\lambda_1-\lambda_4\right)\left(\lambda_2-\lambda_4\right)\left(\lambda_3-\lambda_4\right)}\right] .\quad (10.164) \end{aligned}

(3) Decay constant λ_i is related to half-life (t_{1/2})_i through the standard expression

\lambda_i=\frac{\ln 2}{\left(t_{1 / 2}\right)_i}             (10.165)

(4) Initial number of parent nuclei N_1(0) is related to initial parent activity \mathcal{A}_1(0) as follows

\begin{aligned} N_1(0) & =\frac{\mathcal{A}_1(0)}{\lambda_1}=\frac{\mathcal{A}_1(0)}{\ln 2}\left(t_{1 / 2}\right)_1 \\ & =\frac{(2.5 \mathrm{mCi}) \times(1.5 \mathrm{~d})}{\ln 2} \times\left(3.7 \times 10^7 \mathrm{~s}^{-1} / \mathrm{mCi}\right) \times(24 \mathrm{~h} / \mathrm{d}) \times(3600 \mathrm{~s} / \mathrm{h}) \\ & =1.73 \times 10^{13} .\quad (10.166) \end{aligned}

(5) Table 10.5 provides a summary of relevant specific data for the first four generations of the radioactive decay series analyzed in this problem.

(a) Expressions for the number of parent N_1(t),\ daughter\ N_2(t), granddaughter N_3(t), and great granddaughter N_4(t) nuclei as a function of time t is obtained by inserting (10.165) and appropriate decay constants into (10.157), (10.158), (10.159), and (10.160), respectively

(1)

N_1(t)=N_1(0) e^{-\lambda_1 t}=1.73 \times 10^{13} \times e^{-\left(0.462 \mathrm{~d}^{-1}\right) t},          (10.167)

(2)

\begin{aligned} N_2(t) & =N_1(0) \frac{\lambda_1}{\lambda_2-\lambda_1}\left[e^{-\lambda_1 t}-e^{-\lambda_2 t}\right] \\ & =2.66 \times 10^{-12} \times\left[e^{-\left(0.462 \mathrm{~d}^{-1}\right) t}-e^{-\left(3.466 \mathrm{~d}^{-1}\right) t}\right], \end{aligned}              (10.168)

(3)

\begin{aligned} N_3(t)= & N_1(0) \lambda_1 \lambda_2\left[\frac{e^{-\lambda_1 t}}{\left(\lambda_2-\lambda_1\right)\left(\lambda_3-\lambda_1\right)}+\frac{e^{-\lambda_2 t}}{\left(\lambda_1-\lambda_2\right)\left(\lambda_3-\lambda_2\right)}\right. \\ & \left.+\frac{e^{-\lambda_3 t}}{\left(\lambda_1-\lambda_3\right)\left(\lambda_2-\lambda_3\right)}\right] \\ = & -3.49 \times 10^{13} \times e^{-\left(0.462 \mathrm{~d}^{-1}\right) \times t}+2.82 \times 10^{-13} \times e^{-\left(3.466 \mathrm{~d}^{-1}\right) \times t} \\ & +3.21 \times 10^{13} \times e^{-\left(0.198 \mathrm{~d}^{-1}\right) \times t},\quad (10.169) \end{aligned}

(4)

\begin{aligned} N_4(t)= & N_1(0) \lambda_1 \lambda_2 \lambda_3\left[\frac{e^{-\lambda_1 t}}{\left(\lambda_2-\lambda_1\right)\left(\lambda_3-\lambda_1\right)\left(\lambda_4-\lambda_1\right)}\right. \\ & +\frac{e^{-\lambda_2 t}}{\left(\lambda_1-\lambda_2\right)\left(\lambda_3-\lambda_2\right)\left(\lambda_4-\lambda_2\right)}+\frac{e^{-\lambda_3 t}}{\left(\lambda_1-\lambda_3\right)\left(\lambda_2-\lambda_3\right)\left(\lambda_4-\lambda_3\right)} \\ & \left.+\frac{e^{-\lambda_4 t}}{\left(\lambda_1-\lambda_4\right)\left(\lambda_2-\lambda_4\right)\left(\lambda_3-\lambda_4\right)}\right] \\ = & -9.73 \times 10^{13} \times e^{-\left(0.462 \mathrm{~d}^{-1}\right) \times t}-1.91 \times 10^{11} \times e^{-\left(3.4662 \mathrm{~d}^{-1}\right) \times t} \\ & +1.90 \times 10^{13} \times e^{-\left(0.198 \mathrm{~d}^{-1}\right) \times t}+7.85 \times 10^{13} \\ & \times e^{-\left(0.533 \mathrm{~d}^{-1}\right) \times t} .\quad (10.170) \end{aligned}

(b) Expressions for the activity of the parent \mathcal{A}_1(t), daughter \mathcal{A}_2(t), granddaughter \mathcal{A}_3(t), and great granddaughter \mathcal{A}_4(t) as a function of time t is obtained by inserting \mathcal{A}_1(0) = 2.5 mCi and appropriate decay constants into (10.161), (10.162), (10.163), and (10.164), respectively

(1)

\mathcal{A}_1(t)=\lambda_1 N_1(t)=\mathcal{A}_1(0) e^{-\lambda_1 t}=\left[2.5 \times e^{-\left(0.462 \mathrm{~d}^{-1}\right) \times t}\right] \mathrm{mCi},          (10.171)

(2)

A_2 (t) = λ_2 N_2 (t) A_1 (0) \frac{λ_2}{λ_2  –  λ_1}[e^{-λ_1 t }  –  e^{-λ_2 t}] \\ \quad = 2.88 \times [e^{-(0.462  d^{-1}) \times t}  –  e^{-(3.466  d^{-1}) \times t}] mCi,     (10.172)

(3)

\begin{aligned} \mathcal{A}_3(t)= & \lambda_3 N_3(t)=N_1(0) \lambda_1 \lambda_2 \lambda_3\left[\frac{e^{-\lambda_1 t}}{\left(\lambda_2-\lambda_1\right)\left(\lambda_3-\lambda_1\right)}\right. \\ & \left.+\frac{e^{-\lambda_2 t}}{\left(\lambda_1-\lambda_2\right)\left(\lambda_3-\lambda_2\right)}+\frac{e^{-\lambda_3 t}}{\left(\lambda_1-\lambda_3\right)\left(\lambda_2-\lambda_3\right)}\right] \\ = & {\left[-2.16 \times e^{-\left(0.462 \mathrm{~d}^{-1}\right) \times t}+0.175 \times e^{-\left(3.466 \mathrm{~d}^{-1}\right) \times t}\right.} \\ & \left.+1.99 \times e^{-\left(0.198 \mathrm{~d}^{-1}\right) \times t}\right] \mathrm{mCi},\quad (10.173) \end{aligned}

(4)

\begin{aligned} \mathcal{A}_4(t)= & \lambda_4 N_4(t)=N_1(0) \lambda_1 \lambda_2 \lambda_3 \lambda_4\left[\frac{e^{-\lambda_1 t}}{\left(\lambda_2-\lambda_1\right)\left(\lambda_3-\lambda_1\right)\left(\lambda_4-\lambda_1\right)}\right. \\ & +\frac{e^{-\lambda_2 t}}{\left(\lambda_1-\lambda_2\right)\left(\lambda_3-\lambda_2\right)\left(\lambda_4-\lambda_2\right)}+\frac{e^{-\lambda_3 t}}{\left(\lambda_1-\lambda_3\right)\left(\lambda_2-\lambda_3\right)\left(\lambda_4-\lambda_3\right)} \\ & \left.+\frac{e^{-\lambda_4 t}}{\left(\lambda_1-\lambda_4\right)\left(\lambda_2-\lambda_4\right)\left(\lambda_3-\lambda_4\right)}\right] \\ = & {\left[-2.16 \times e^{-\left(0.462 \mathrm{~d}^{-1}\right) \times t}+0.175 \times e^{-\left(3.466 \mathrm{~d}^{-1}\right) \times t}\right.} \\ & \left.+1.99 \times e^{-\left(0.198 \mathrm{~d}^{-1}\right) \times t}+1.99 \times e^{-\left(0.198 \mathrm{~d}^{-1}\right) \times t}\right] \mathrm{mCi} .\quad (10.174) \end{aligned}

(c) Numbers of nuclei N_1(t),\ N_2(t),\ N_3(t),\ and\ N_4(t) present at time t = 2.5 d are calculated inserting t = 2.5 d into (10.167), (10.168), (10.169), and (10.170), respectively

(1)

N_1(t)=1.73 \times 10^{13} \times e^{-0.462 \times 2.5}=5.45 \times 10^{12}        (10.175)

(2)

N_2(t)=2.66 \times 10^{12} \times\left[e^{-0.462 \times 2.5}-e^{-3.466 \times 2.5}\right]=0.838 \times 10^{12} \text {, }            (10.176)

(3)

\begin{aligned} N_3(t)= & -3.49 \times 10^{13} \times e^{-0.462 \times 2.5}+2.82 \times 10^{13} \times e^{-3.466 \times 2.5} \\ & +3.21 \times 10^{13} \times e^{-0.198 \times 2.5}=8.58 \times 10^{12}\quad (10.177) \end{aligned}

(4)

\begin{aligned} N_4(t)= & -9.73 \times 10^{13} \times e^{-0.462 \times 2.5}-1.91 \times 10^{13} \times e^{-3.466 \times 2.5} \\ & +1.9 \times 10^{13} \times e^{-0.198 \times 2.5}+7.85 \times 10^{13} \times e^{-0.533 \times 2.5} \\ = & 1.64 \times 10^{12} .\quad (10.178) \end{aligned}

(d) Activities \mathcal{A}_1(t),\ \mathcal{A}_2(t),\ \mathcal{A}_3(t),\ and\ \mathcal{A}_4(t) present at time t = 2.5 d are calculated by multiplication of the number of nuclei N_1(t),\ N_2(t),\ N_3(t),\ and\ N_4(t), respectively, with appropriate decay constant λ

(1)

\begin{aligned} \mathcal{A}_1(t) & =\lambda_1 N_1(t)=\frac{\left(0.462 \mathrm{~d}^{-1}\right) \times 5.45 \times 10^{12}}{(24 \mathrm{~h} / \mathrm{d}) \times\left(3.6 \times 10^3 \mathrm{~s} / \mathrm{h}\right) \times\left(3.7 \times 10^7 \mathrm{mCi} / \mathrm{s}\right)} \\ & =0.788 \mathrm{mCi},\quad (10.179) \end{aligned}

(2)

\begin{aligned} \mathcal{A}_2(t) & =\lambda_2 N_2(t)=\frac{\left(3.466 \mathrm{~d}^{-1}\right) \times 0.838 \times 10^{12}}{(24 \mathrm{~h} / \mathrm{d}) \times\left(3.6 \times 10^3 \mathrm{~s} / \mathrm{h}\right) \times\left(3.7 \times 10^7 \mathrm{mCi} / \mathrm{s}\right)} \\ & =0.909 \mathrm{mCi},\quad (10.180) \end{aligned}

(3)

\begin{aligned} \mathcal{A}_3(t) & =\lambda_3 N_3(t)=\frac{\left(0.198 \mathrm{~d}^{-1}\right) \times 8.58 \times 10^{12}}{(24 \mathrm{~h} / \mathrm{d}) \times\left(3.6 \times 10^3 \mathrm{~s} / \mathrm{h}\right) \times\left(3.7 \times 10^7 \mathrm{mCi} / \mathrm{s}\right)} \\ & =0.531 \mathrm{mCi},\quad (10.181) \end{aligned}

(4)

\begin{aligned} \mathcal{A}_4(t) & =\lambda_4 N_4(t)=\frac{\left(0.533 \mathrm{~d}^{-1}\right) \times 1.64 \times 10^{12}}{(24 \mathrm{~h} / \mathrm{d}) \times\left(3.6 \times 10^3 \mathrm{~s} / \mathrm{h}\right) \times\left(3.7 \times 10^7 \mathrm{mCi} / \mathrm{s}\right)} \\ & =0.273 \mathrm{mCi} .\quad (10.182) \end{aligned}

Results of (c) and (d) are summarized in Table 10.6.

(e) Data calculated in (c) for the numbers of nuclei N_1(t),\ N_2(t),\ N_3(t),\ and\ N_4(t) present at time t = 2.5 d are superimposed onto curves plotting number of nuclei N(t) against time t, as shown in Fig. 10.10.

(f) Data calculated in (d) for activities \mathcal{A}_1(t),\ \mathcal{A}_2(t),\ \mathcal{A}_3(t),\ and\ \mathcal{A}_4(t) present at time t = 2.5 d are superimposed onto curves plotting activities \mathcal{A}_1(t),\ \mathcal{A}_2(t),\ \mathcal{A}_3(t),\ and\ \mathcal{A}_4(t) against time t, as shown in Fig. 10.11.

Table 10.5 Summary of relevant specific data for the first four generations of the radioactive decay series of Prob. 221
Radionuclide Parent Daughter Granddaughter
Great granddaughter
Generation n n = 1 n = 2 n = 3 n = 4
\text { Half-life }\left(t_{1 / 2}\right)_n \left(t_{1 / 2}\right)_1=1.5 \mathrm{~d} \left(t_{1 / 2}\right)_2=0.2 \mathrm{~d} \left(t_{1 / 2}\right)_3=3.5 \mathrm{~d}
\left(t_{1 / 2}\right)_4=1.3 \mathrm{~d}
\text { Decay constant } \lambda\left(\mathrm{d}^{-1}\right) 0.462 3.466 0.198 0.533
Table 10.6 Summary of results of (c) and (d)
P(i = 1) D(i = 2) G(i = 3) GG(i = 4)
N_i(t = 0) 1.73 \times 10^{13} 0 0 0
N_i(t = 2.5d) 0.545 \times 10^{13} 0.084 \times 10^{13} 0.858 \times 10^{13}
0.164 \times 10^{13}
A_i(t = 0) 2.5 mCi 0 0 0
\mathcal{A}_i(t = 2.5d) 0.788 mCi 0.909 mCi 0.531 mCi 0.273 mCi
Screenshot 2023-07-19 081143
Screenshot 2023-07-19 081158

Related Answered Questions