Holooly Plus Logo

Question E.5: In the unbalanced three-phase system shown in Fig. E.11, fin......

In the unbalanced three-phase system shown in Fig. E.11, find currents I_{1}  , I_{2} , I_{3} ,   and   I_{Bb}   . Let

Z_{A}  =  12  +  j10 Ω  ,             Z_{B}  =  10  – j 8 Ω  ,        Z_{C}  =  15  +  j6 Ω

تعليق توضيحي 2023-03-22 185411
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

For mesh 1,

120  \underline{/ – 120°} –  120 \underline{/0°} +  I_{1} (2 +  1  +  12 +  j10) – I_{2}  – I_{3}  (12  +  j10)  = 0

or

I_{1} (15 +  j10)  –  I_{2}  –  I_{3} (12 +  j10)  =  120\underline{/0°}  –  120 \underline{/ – 120°}               (E.5.1)

For mesh 2,

120 \underline{/  120°} – 120 \underline{/ – 120°}  + I_{2} (2  +  1  +  10  – j8) – I_{1}  –  I_{3} (10  –  j8) = 0

or

– I_{1}  +  I_{2} (13  –  j8)  –  I_{3} (10  –   j8)  =  120 \underline{/- 120°}  –  120 \underline{/  120° }                   (E.5.2)

For mesh 3,

I_{3} (12  +  j10  +  10 –  j8  +  15  +  j6)  –   I_{1} (12  +  j10) – I_{2} (10  –  j8) = 0

or

– I_{1} (12  +  j10) –  I_{2} (10  –  j8) –  I_{3} (37 +  j8)  =  0               (E.5.3)

In matrix form, we can express Eqs. (E.5.1) to (E.5.3) as

\begin{bmatrix} 15  +  j10 & -1 & -12  – j10 \\ -1 & 13 – j8 & -10 + j8 \\ -12 – j10  &  -10 + j8  &  37 + j8 \end{bmatrix} \begin{bmatrix}I_{1}\\ I_{2} \\ I_{3} \end{bmatrix} 

  = \begin{bmatrix}120 \underline{/0°}  – 120\underline{/ – 120°} \\ 120\underline{/ – 120°} – 120\underline{/ 120°}  \\ 0  \end{bmatrix} 

or

ZI = V

The 'Blue Check Mark' means that either the MATLAB code/script/answer provided in the answer section has been tested by our team of experts; or the answer in general has be fact checked.

Learn more on how do we answer questions.

Script File

We input matrices Z and V  into MATLAB to get  I .

> z = [(15   +   10j)  -1  (-12   - 10j);
-1  (13  - 8j)  (-10  +  8j);
(-12  - 10j) (-10  +  8j) (37  +  8j)];
>> c1=120*exp(j*pi*(-120)/180);
>> c2=120*exp(j*pi*(-120)/180);
>> a1=120  -  c1; a2=c1  -  c2;
>> V = [a1;    a2;   0]
>> I = inv(z)*V
I=
16.9910  -  6.5953i
12.4023  -  16.9993i
5.6621  -  6.0471i
>> IbB = I(2)  -  I(1)
IbB =
-4.5887  -  10.4039i
>> abs(I(1))
ans =
18.2261
>> angle(I(1))*180/pi
ans =
-21.2146

>> abs (I(2))
ans =
21.0426
>> angle(I(2))*180/pi
ans =
-53.8864
>> abs(I(3))
ans =
8.2841
>> angle(I(3))*180/pi
ans =
-46.8833
>> abs(IbB)
ans =
11.3709
>> angle(IbB)*180/pi
ans =
-113.8001

Thus, I_{1} = 18.23 \underline{/ - 21 .21°} ,     I_{2} = 21.04 \underline{/ -58.89°}

I_{3} = 8.284 \underline{/ - 46.88° } ,  and  I_{bB} = 11.37 \underline{/ - 113. 8°}  A

Related Answered Questions

Question: E.3

Verified Answer:

For the four meshes,   - 6  +  9I_{1} -  4 ...
Question: E.4

Verified Answer:

As usual, we convert the circuit in the time-domai...
Question: E.1

Verified Answer:

Question: E.2

Verified Answer:

At node 1, 2 = \frac{V_{1}  -  V_{2}}{4} +...