Holooly Plus Logo

Question 3.7: Lethargy defined as u = ln(Eo / E) is often used in neutron ......

Lethargy defined as u = ln(E_o / E) is often used in neutron slowing down problems; lethargy increases as energy decreases. Noting the following transformations: φ(E)dE = – φ (u)du  p(E → E^′) = -p(u → u^′)du^′ and Σ_x(E) = Σ_x(u) ,

a. Show that p(E → E^′) given by Eq. (2.47) becomes

p(u → u^′) = \Bigg \{ \begin {matrix}\frac{1}{1 – α} exp (u  –  u^′) ,& u ≤ u′ ≤ u + ln(1/α) \\ 0, & otherwise \end {matrix}

b. Express Eq. (3.22) in terms of u.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

First note that E = E_o  exp(-u) and thus d E/\,d u=-E_{o}\exp(-u)

a.  p(u\to u^{\prime})=-p(E\to E^{\prime})d E^{\prime}/\,d u^{\prime}=p(E\to E^{\prime})E_{o}\exp(-u^{\prime}) Substituting from Eq. (2.47):

p(u\to u^{\prime})={\frac{1}{1-\alpha}}\cdot{\frac{1}{E}}E_{o}\exp(-u^{\prime})={\frac{1}{1-\alpha}}\exp(u-u^{\prime})

Finally when E^{\prime}=E~,~u^{\prime}=u~~\mathrm{and~when}~E^{\prime}=\alpha E\,.

u^{\prime}=\operatorname{ln}(E_{o}\ /\alpha E)=\operatorname{ln}(E_{o}\ /E)-\operatorname{ln}(\alpha)=u+\operatorname{ln}(1/\alpha)

b. First note that \varphi(E)=-\varphi(u)d u\;/\,d E=\varphi(u)\frac{1}{E_{o}}\mathrm{exp}(u)\;. Thus Eq. (3.22) may be written as

\Sigma_{s}(u)\varphi(u)\frac{1}{E_{o}}\mathrm{exp}(u) = \frac{1}{1-\alpha}\int_{E}^{E/\alpha}\;\frac{1}{E^{\prime}}\Sigma_{s}(E^{\prime})\varphi(E^{\prime})d E^{\prime}= -\frac{1}{1-\alpha}\int_{u}^{u-\mathrm{ln}(1 / \alpha)}\ \frac{\exp(u^{\prime})}{E_{o}}\Sigma_{s}(u^{\prime})\varphi(u^{\prime})d u^{\prime}

Thus \Sigma_{s}(u)\varphi(u)={\frac{1}{1-\alpha}}\int_{u-\operatorname{ln}(1 / \alpha)}^{u} {\exp}(u^{\prime}-u)\Sigma_{s}(u^{\prime})\varphi(u^{\prime})d u^{\prime}

Related Answered Questions

Question: 3.3

Verified Answer:

First write Eq. (3.32) as :s(E)q_{o}=\int_{...
Question: 3.12

Verified Answer:

The microscopic cross section may be considered 1/...