Question 1.1: Load Resultants at a Section of a Piping An L-shaped pipe as......

Load Resultants at a Section of a Piping

An L-shaped pipe assembly of two perpendicular parts ABAB and BCBC is connected by an elbow at BB and bolted to a rigid frame at CC. The assembly carries a vertical load PAP_A, a torque TAT_A at AA, as well as its own weight (Figure 1.3a). Each pipe is made of steel of unit weight ww and nominal diameter dd.

Find

What are the axial force, shear forces, and moments acting on the cross-section at point OO?

Given

a=0.6 m,b=0.48 m,d=63.5 mm(2.5  in.), PA=100 N,TA=25 N m,w=5.79 lb/ft a=0.6  m , b=0.48  m , d=63.5  mm \left(2.5  \text { in.), } P_A=100  N , T_A=25  N  \cdot m , w=5.79  lb / ft \right. (see Table A.4).

Assumption

The weight of the pipe assembly is uniformly distributed over its entire length.

F1.3
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

See Figure 1.3 and Equation (1.5).

ΣFx=0ΣFy=0ΣFz=0ΣMx=0ΣMy=0ΣMz=0 \begin{array}{rccc} \Sigma F_x=0 & \Sigma F_y=0 & \Sigma F_z=0 \\ \Sigma M_x=0 & \Sigma M_y=0 & \Sigma M_z=0 \end{array}           (1.5)

Using the conversion factor from Table A.1, ww=5.79 (N/m)/(0.0685) =84.53 N/m. Thus, the weights of the pipes ABAB and BOBO are equal to

WAB=(84.53)(0.6)=50.72 N,WBO=(84.53)(0.48)=40.57 N W_{A B}=(84.53)(0.6)=50.72  N , \quad W_{B O}=(84.53)(0.48)=40.57  N

Free-body: Part ABOABO. We have six equations of equilibrium for the 3D force system of six unknowns (Figure 1.3b). The first three from Equation (1.5) results in the internal forces on the pipe at point OO as follows:

ΣFx=0:F=0ΣFy=0:Vy50.7240.57100=0:Vy=191.3 NΣFz=0:Vz=0 \begin{array}{ll} \Sigma F_x=0: & F=0 \\ \Sigma F_y=0: & V_y-50.72-40.57-100=0: \quad V_y=191.3  N \\ \Sigma F_z=0: & V_z=0 \end{array}

Applying the last three from Equation (1.5), the moments about point OO are found to be

ΣMx=0:T+(50.72)(0.3)+100(0.6)=0,T=75.2 NmΣMy=0:My=0ΣMz=0:Mz25100(0.48)(50.72)(0.48)(40.57)(0.24)=0,Mz=107.1 Nm \begin{array}{ll} \Sigma M_x=0: & T+(50.72)(0.3)+100(0.6)=0, \quad T=-75.2  N \cdot m \\ \Sigma M_y=0: & M_y=0 \\ \Sigma M_z=0: & M_z-25-100(0.48)-(50.72)(0.48)-(40.57)(0.24)=0, \\ & M_z=107.1  N \cdot m \end{array}

Comment: The negative value calculated for TT means that the torque vector is directed opposite to that indicated in Figure 1.3b.

TABLE A.1
Conversion Factors: SI Units to US Customary Units
Quantity SI Unit US Equivalent
Acceleration m/s2^2 (meter per square second) 3.2808 ft/s²
Area m2m^2 (square meter) 10.76 ft²
Force N (newton) 0.2248 lb
Intensity of force N/m (newton per meter) 0.0685 lb/ft
Length m (meter) 3.2808 ft
Mass kg (kilogram) 2.2051 lb
Moment of a force, torque N · m (newton meter) 0.7376 lb · ft
Moment of inertia of a plane area m4m^4 (meter to fourth power) 2.4025×106in.4 10^6 in.^4
Moment of inertia of a mass kgm2 kg · m^2 (kilogram meter squared) 0.7376 ft · s²
Power W (watt) 0.7376 ft · lb/s
kW (kilowatt) 1.3410 hp
Pressure or stress Pa (pascal) 0. 145×103 10^{−3} psi
Specific weight kN/m3kN/m^3 (kilonewton per cubic meter) 3.684×103lb/in.310^{−3}lb/in.^ 3
Velocity m/s (meter per second) 3.2808 ft/s
Volume m3m^3 (cubic meter) 35.3147 ft³
Work or energy JJ (joule, newton meter) 0.7376 ft · lb
Notes: 1 mile, mi=5280 ft=1609 m; 1 kilogram, kg=2.20946 lb=9.807 N; 1 joule, JJ=1 N · m; 1 inch, in.=25.4 mm; 1 foot, ft=12 in.=304.6 mm; 1 acceleration of gravity, gg=9. 8066 m/ s²=32.174 ft/s².

Related Answered Questions