Holooly Plus Logo

Question 9.22: Sizing an Array for a 150-ft Well in Santa Maria, California......

Sizing an Array for a 150-ft Well in Santa Maria, California. Suppose that the goal is to pump at least 1200 gallons per day from the 150-ft well described in Example 9.21 using the Jacuzzi SJ1C11 pump. Size the PV array based on Siemens SR100 modules with rated current 5.9 A, mounted at an L + 15º tilt.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

From the solar radiation tables given in Appendix E, the worst month is December, with an insolation of 4.9 kwh/m²-day. From (9.60)

Q\left(gpm\right) \ = \ \frac{\text{Daily demand} \ \left({gal}/{day}\right)}{\text{Insolation}\left({h}/{day \ @ \ 1-\text{sun}}\right) \ \times \ 60 \ {min}/{h}} (9.60)

Q \ = \ \frac{1200 \ {gal}/{day}}{4.9 \ \left({h}/{day \ @ \ 1-\text{sun}}\right) \ \times \ 60 \ {min}/{h}} = \ 4.1 \ gpm

From Fig. 9.60, at 4.1 gpm the total dynamic head is about 170 ft and the pump efficiency is about 34%. From (9.59), the estimated pump input power is

P_{in} \ \left(W\right) \ \text{to pump} \ = \ \frac{\text{Power to fluid}}{\text{Pump efficiency}} \ = \ \frac{0.1885 \ \times \ H\left(ft\right) \ \times \ Q\left(gpm\right)}{\eta_{p}} (9.59)

P_{in}\left(W\right) \ = \ \frac{0.1885 \ \times \ H\left(ft\right) \ \times \ Q\left(gpm\right)}{\text{Pump efficiency}} \ = \ \frac{0.1885 \ \times \ 170 \ \times \ 4.1}{0.34} \ = \ 386 \ W

From Fig. 9.60, at 4.1 gpm and 170 ft of head, the pump voltage is a little under 45 V, which means that at 15 V per module, three modules in series should be sufficient.

Using (9.62), we can decide upon the number of parallel strings of modules

\# \ \text{strings} \ = \ \frac{\text{Pump input power} \ P_{in}\left(W\right)}{\# \ \text{mods in series} \ \times \ 15 \ {V}/{mod} \ \times \ I_{R}\left(A\right) \ \times \ \text{de-rating}} (9.62)

\# \ \text{strings} \ = \ \frac{386 \ W}{3 \ \text{modules string} \ \times \ 15 \ {V}/{\text{module}} \ \times \ 5.9 \ A \ \times \ 0.80} = \ 1.8

so choose two parallel strings.

From (9.63), estimated delivery in January with two strings of three modules would be

\begin{matrix} Q\left({gal}/{day}\right) & = \ 15 \ {V}/{mod} \ \times \ I_{R} \ \left(A\right) \ \times \ \left(\# \ \text{mods}\right) \ \times \ \left(\text{Peak} \ {h}/{day}\right) \ \times \ 60 \ {min}/{h} & \\ & \times \ \text{de-rating} \ \times \ {\eta_{p}}/{\left[0.1885 \ \times \ H\left(ft\right)\right]} \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad & \left(9.63\right) \end{matrix}
\begin{matrix} Q & \approx \ \frac{15 \ V \ \times \ 5.9 \ A \ \times \ 6 \ \text{modules} \ \times \ 4.9 \ {h}/{day} \ \times \ 60 \ {min}/{h} \ \times \ 0.80 \ \times \ 0.34}{0.1885 \ \times \ 170 \ ft} \\ & = \ 1325 \ {gal}/{day} \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \end{matrix}

A system diagram is shown in Fig. 9.61.

Figure 9.60
Figure 9.61

Related Answered Questions