Holooly Plus Logo

Question 10.5: Solving by hand a first-order ODE using the fourth-order Run......

Solving by hand a first-order ODE using the fourth-order Runge-­Kutta method.

Use the classical fourth-order Runge-Kutta method to solve the ODE \frac{d y}{d x}=-1.2 y+7 e^{-0.3 x} from x=0 to x=1.5 with the initial condition y=3 at x=0.

Solve by hand using h=0.5.

Compare the results with the exact (analytical) solution: y=\frac{70}{9} e^{-0.3 x}-\frac{43}{9} e^{-1.2 x}.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The first point of the solution is (0,3), which is the point where the initial condition is given. The values of x and y at the first point are x_{1}=0 and y_{1}=3.

The rest of the solution is done in steps. In each step the next value of the independent variable is calculated by:

x_{i+1}=x_{i}+h=x_{i}+0.5     (10.88)

The value of the dependent variable y_{i+1} is calculated by first evaluating K_{1}, K_{2}, K_{3} and K_{4} using Eq. (10.87):

\begin{aligned}& K_{1}=f\left(x_{i}, y_{i}\right) \\& K_{2}=f\left(x_{i}+\frac{1}{2} h, y_{i}+\frac{1}{2} K_{1} h\right) \\& K_{3}=f\left(x_{i}+\frac{1}{2} h, y_{i}+\frac{1}{2} K_{2} h\right) \\& K_{4}=f\left(x_{i}+h, y_{i}+K_{3} h\right)\end{aligned}        (10.89)

and then substituting the Ks in Eq. (10.86):

y_{i+1}=y_{i}+\frac{1}{6}\left(K_{1}+2 K_{2}+2 K_{3}+K_{4}\right) h      (10.90)

First step: In the first step i=1. Equations (10.88)-(10.90) give: x_{2}=x_{1}+0.5=0+0.5=0.5

 

K_{1}=-1.2 y_{1}+7 e^{-0.3 x_{1}}=-1.2 \cdot 3+7 e^{-0.3 \cdot 0}=3.4

 

x_{1}+\frac{1}{2} h=0+\frac{1}{2} \cdot 0.5=0.25 \quad y_{1}+\frac{1}{2} K_{1} h=3+\frac{1}{2} \cdot 3.4 \cdot 0.5=3.85

 

K_{2}=-1.2\left(y_{1}+\frac{1}{2} K_{1} h\right)+7 e^{-0.3\left(x_{1}+\frac{1}{2} h\right)}=-1.2 \cdot 3.85+7 e^{-0.3 \cdot 0.25}=1.874

 

y_{1}+\frac{1}{2} K_{2} h=3+\frac{1}{2} \cdot 1.874 \cdot 0.5=3.469

 

K_{3}=-1.2\left(y_{1}+\frac{1}{2} K_{2} h\right)+7 e^{-0.3\left(x_{1}+\frac{1}{2} h\right)}=-1.2 \cdot 3.469+7 e^{-0.3 \cdot 0.25}=2.331

 

y_{1}+K_{3} h=3+2.331 \cdot 0.5=4.166

 

K_{4}=-1.2\left(y_{1}+K_{3} h\right)+7 e^{-0.3\left(x_{1}+h\right)}=-1.2 \cdot 4.166+7 e^{-0.3 \cdot 0.5}=1.026

 

y_{2}=y_{1}+\frac{1}{6}\left(K_{1}+2 K_{2}+2 K_{3}+K_{4}\right) h=3+\frac{1}{6}(3.4+2 \cdot 1.874+2 \cdot 2.331+1.026) \cdot 0.5=4.069

At the end of the first step: x_{2}=0.5, y_{2}=4.069

Second step: In the second step i=2. Equations (10.88)-(10.90) give:

x_{3}=x_{2}+0.5=0.5+0.5=1.0

 

K_{1}=-1.2 y_{2}+7 e^{-0.3 x_{2}}=-1.2 \cdot 4.069+7 e^{-0.3 \cdot 0.5}=1.142

 

x_{2}+\frac{1}{2} h=0.5+\frac{1}{2} \cdot 0.5=0.75 \quad y_{2}+\frac{1}{2} K_{1} h=4.069+\frac{1}{2} \cdot 1.142 \cdot 0.5=4.355

 

K_{2}=-1.2\left(y_{2}+\frac{1}{2} K_{1} h\right)+7 e^{-0.3\left(x_{2}+\frac{1}{2} h\right)}=-1.2 \cdot 4.355+7 e^{-0.3 \cdot 0.75}=0.3636

 

y_{2}+\frac{1}{2} K_{2} h=4.069+\frac{1}{2} \cdot 0.3636 \cdot 0.5=4.16

 

K_{3}=-1.2\left(y_{2}+\frac{1}{2} K_{2} h\right)+7 e^{-0.3\left(x_{2}+\frac{1}{2} h\right)}=-1.2 \cdot 4.16+7 e^{-0.3 \cdot 0.75}=0.5976

 

y_{2}+K_{3} h=4.069+0.5976 \cdot 0.5=4.368

 

K_{4}=-1.2\left(y_{2}+K_{3} h\right)+7 e^{-0.3\left(x_{2}+h\right)}=-1.2 \cdot 4.368+7 e^{-0.3 \cdot 1.0}=-0.0559

 

y_{3}=y_{2}+\frac{1}{6}\left(K_{1}+2 K_{2}+2 K_{3}+K_{4}\right) h=4.069+\frac{1}{6}[1.142+2 \cdot 0.3636+2 \cdot 0.5976+(-0.0559)] \cdot 0.5=4.32

At the end of the second step: x_{3}=1.0, y_{3}=4.32

Third step: In the third step i=3. Equations (10.88)-(10.90) give:

x_{4}=x_{3}+0.5=1.0+0.5=1.5

 

K_{1}=-1.2 y_{3}+7 e^{-0.3 x_{3}}=-1.2 \cdot 4.32+7 e^{-0.3 \cdot 1.0}=0.001728

 

x_{3}+\frac{1}{2} h=1.0+\frac{1}{2} \cdot 0.5=1.25 \quad y_{3}+\frac{1}{2} K_{1} h=4.32+\frac{1}{2} \cdot 0.001728 \cdot 0.5=4.320

 

K_{2}=-1.2\left(y_{3}+\frac{1}{2} K_{1} h\right)+7 e^{-0.3\left(x_{3}+\frac{1}{2} h\right)}=-1.2 \cdot 4.32+7 e^{-0.3 \cdot 1.25}=-0.373

 

y_{3}+\frac{1}{2} K_{2} h=4.32+\frac{1}{2} \cdot(-0.373) \cdot 0.5=4.227

 

K_{3}=-1.2\left(y_{3}+\frac{1}{2} K_{2} h\right)+7 e^{-0.3\left(x_{3}+\frac{1}{2} h\right)}=-1.2 \cdot 4.227+7 e^{-0.3 \cdot 1.25}=-0.2614

 

y_{3}+K_{3} h=4.32+(-0.2614) \cdot 0.5=4.189

 

K_{4}=-1.2\left(y_{3}+K_{3} h\right)+7 e^{-0.3\left(x_{3}+h\right)}=-1.2 \cdot 4.189+7 e^{-0.3 \cdot 1.5}=-0.5634

 

y_{4}=y_{3}+\frac{1}{6}\left(K_{1}+2 K_{2}+2 K_{3}+K_{4}\right) h=4.32+\frac{1}{6}[0.001728+2 \cdot(-0.373)+2 \cdot(-0.2614)+(-0.5634)] \cdot 0.5=4.167

 

At the end of the third step: x_{4}=1.5, y_{4}=4.167

A comparison between the numerical solution and the exact solution is shown in the following table and figure. The error is 0.003 . The global truncation error in the second-order Runge-Kutta method is of the order of h^{4}. In this problem h^{4}=0.5^{4}=0.0625, which is smaller than the actual error. It should be remembered, however, that in the error term the h^{4} is multiplied by a constant whose value is not known. This shows that the estimates of truncation errors are good for comparing the accuracy of different methods, but they do not necessarily give an accurate numerical value for the error.

\begin{array}{lllll}i & 1 & 2 & 3 & 4 \\ x_{i} & 0.0 & 0.5 & 1.0 & 1.5 \\ y_{i} \text { (numerical) } & 3.0 & 4.069 & 4.32 & 4.167 \\ y_{i} \text { (exact) } & 3.0 & 4.072 & 4.323 & 4.170 \\ \text { Error } & 0.0 & 0.003 & 0.003 & 0.003\end{array}
10.4

Related Answered Questions