Specific activity \left(a_D\right)_{theor} of a radionuclide D is defined as activity \mathcal{A}_D per unit mass M_D of the radionuclide and is for a carrier-free radionuclide determined as follows
\left(a_{\mathrm{D}}\right)_{\text {theor }}=\frac{\mathcal{A}_{\mathrm{D}}}{M_{\mathrm{D}}}=\frac{\lambda_{\mathrm{D}} N}{M_{\mathrm{D}}}=\frac{\lambda_{\mathrm{D}} N_{\mathrm{A}}}{A_{\mathrm{D}}}=\frac{(\ln 2) N_{\mathrm{A}}}{\left(t_{1 / 2}\right)_{\mathrm{D}} A_{\mathrm{D}}} \text {, } (12.134)
where \lambda_{\mathrm{D}},\left(t_{1 / 2}\right)_{\mathrm{D}} \text {, and } A_{\mathrm{D}} are the decay constant, half-life, and atomic mass, respectively, of the radionuclide D and N_A is the Avogadro constant \left(6.022 \times 10^{23} \mathrm{~mol}^{-1}\right).
(a) Derive expressions for specific activity a_D of radionuclides produced in nuclear activation using: (1) saturation model of nuclear activation and (2) depletion model of nuclear activation. Discuss the dependence of a_D on activation time t and particle fluence rate \dot{φ}. What is the maximum specific activity \left(a_D\right)_{max} achievable in nuclear activation using the saturation model and the depletion model?
(b) Calculate the theoretical specific activity \left(a_D\right)_{theor} given in (12.134) for the following radionuclides D of interest in medical physics: cobalt-60 (Co-60), molybdenum-99 (Mo-99), europium-152 (Eu-152), iridium192 (Ir-192), and gold-198 (Au-198).
(c) Determine the maximum specific activity \left(a_D\right)_{max} attainable in thermal neutron activation in a nuclear reactor with neutron fluence rate \dot{φ} of 5 \times 10^{11} \mathrm{~cm}^{-2} \cdot \mathrm{s}^{-1}, 2 \times 10^{13} \mathrm{~cm}^{-2} \cdot \mathrm{s}^{-1}, 3 \times 10^{14} \mathrm{~cm}^{-2} \cdot \mathrm{s}^{-1}, and 1.2 \times 10^{16} \mathrm{~cm}^{-2} \cdot \mathrm{s}^{-1} for the daughter nuclei of (b). Use both the saturation model and the depletion model of nuclear activation and compare the results obtained with the two models.
(d) Determine activation times \left(t_{max}\right)_D required to attain maximum specific activities \left(a_D\right)_{max} of daughter D radionuclides of (b) and neutron fluence rates \dot{φ} of (c).
(a) The equation used for expressing nuclear activation with particle beams (T12.57) accounts for activation and depletion of parent P nuclei as well as for activation of daughter D nuclei. Activation of parent P and daughter D nuclei is governed by cross sections σ_P\ and\ σ_D, respectively; depletion of parent P nuclei is described by the difference between the number of parent P nuclei N_P(t) at time t and the initial number N_P(0) of parent nuclei P at time t = 0, where t stands for activation time.
Two approximations to the general activation equation [see (T12.57)] are in use:
(1) The activation process affects neither the daughter nuclei \left(σ_D = 0\right) nor the number N_P(t) of parent nuclei \left[N_P(t) = N_P(0) = constant\right] resulting in the so-called saturation model of nuclear activation. The initial number N_P(0) of parent nuclei is assumed infinitely large and not affected by nuclear activation of parent P into daughter D.
(2) The activation process does not affect the daughter nuclei (σ_D = 0); however, it affects the number N_{\mathrm{P}}(t) of parent nuclei \left[N_{\mathrm{P}}(0)>N_{\mathrm{P}}(t) \neq \text { constant }\right] resulting in the so-called depletion model of nuclear activation. N_P(0) is finite and undergoes depletion during the nuclear activation process.
(1) Saturation model: The general equation for normalized daughter activity y_{\mathrm{D}}(x) as a function of normalized activation time x \text {, with } x=m \lambda_{\mathrm{D}} t / \ln 2=\sigma_{\mathrm{P}} \dot{\varphi} t / \ln 2, is for the saturation model of nuclear activation expressed as [see (T12.35)]
y_{\mathrm{D}}(x)=\frac{\mathcal{A}_{\mathrm{D}}(t)}{\sigma_{\mathrm{P}} \dot{\varphi} N_{\mathrm{P}}(0)}=\frac{\mathcal{A}_{\mathrm{D}}(t)}{\left(\mathcal{A}_{\mathrm{D}}\right)_{\mathrm{sat}}}=1-e^{-\frac{x}{m} \ln 2}, (12.135)
where
\left(\mathcal{A}_{\mathrm{D}}\right)_{\text {sat }} is the saturation activity of the daughter defined as \left(\mathcal{A}_{\mathrm{D}}\right)_{\text {sat }}=\sigma_{\mathrm{P}} \dot{\varphi} N_{\mathrm{P}}(0).
\dot{\varphi} is the particle fluence rate.
m is the activation factor defined as m=\sigma_{\mathrm{P}} \dot{\varphi} / \lambda_{\mathrm{D}}.
After insertion of (12.135) into (12.134) the specific activity a_D for the saturation model is given by the following expression
where we used the standard expression for N_P(0)/M_P = N_A/A_P\ with\ M_P the initial mass of the parent P nuclide and A_P the atomic mass of the parent nuclide.
From (12.136) we note that the maximum activity \left(a_D\right)_{max} for x → ∞ is proportional to the particle fluence rate \dot{\varphi} and the proportionality constant is \left(\sigma_{\mathrm{P}} N_{\mathrm{A}} / A_{\mathrm{P}}\right).
\left(a_{\mathrm{D}}\right)_{\max }=\frac{\sigma_{\mathrm{P}} N_{\mathrm{A}}}{A_{\mathrm{P}}} \dot{\varphi} . (12.137)
The linear relationship between \left(a_{\mathrm{D}}\right)_{\max } \text { and } \dot{\varphi} \text { works fine at relatively low } \dot{\varphi} \text {; } however, at \dot{\varphi} \rightarrow \infty,(12.137) \text { suggests that }\left(a_{\mathrm{D}}\right)_{\max } \rightarrow \infty in contradiction with the theoretical specific activity \left(a_D\right)_{theor} of (12.134) that is well defined, independent of \dot{φ}, and finite for a given radionuclide.
(2) Depletion model: The general equation for normalized daughter activity y_{\mathrm{D}}(x) as a function of normalized activation time x \text {, with } x=m \lambda_{\mathrm{D}} t / \ln 2=\sigma_{\mathrm{P}} \dot{\varphi} t / \ln 2, is for the depletion model of nuclear activation expressed as [see (T12.33)]
y_{\mathrm{D}}(x)=\frac{\mathcal{A}_{\mathrm{D}}(t)}{\sigma_{\mathrm{P}} \dot{\varphi} N_{\mathrm{P}}(0)}=\frac{1}{1-m}\left\{e^{-x \ln 2}-e^{-\frac{x}{m} \ln 2}\right\}=\frac{1}{1-m}\left\{\frac{1}{2^x}-\frac{1}{2^{x / m}}\right\}, (12.138)
where m is the activation factor defined as m=\sigma_{\mathrm{P}} \dot{\varphi} / \lambda_{\mathrm{D}} .
After insertion of (12.138) into (12.134) the specific activity a_D for the depletion model is given by the following
a_{\mathrm{D}}=\frac{\mathcal{A}_{\mathrm{D}}(t)}{M_{\mathrm{P}}}=\frac{\sigma_{\mathrm{P}} \dot{\varphi} N_{\mathrm{P}}(0) y_{\mathrm{D}}(x)}{M_{\mathrm{P}}}=\frac{\sigma_{\mathrm{P}} \dot{\varphi} N_{\mathrm{A}} y_{\mathrm{D}}(x)}{A_{\mathrm{P}}}=\frac{\sigma_{\mathrm{P}} \dot{\varphi} N_{\mathrm{A}}}{A_{\mathrm{P}}(1-m)}\left\{e^{-x \ln 2}-e^{-\frac{x}{m} \ln 2}\right\}, (12.139)
where, as in (12.136), we used the relationship N_{\mathrm{P}}(0) / M_{\mathrm{P}}=N_{\mathrm{A}} / A_{\mathrm{P}} .
In contrast to (12.136) which exhibits \left(a_D\right)_{max} given by (12.137) at x → ∞, (12.139) exhibits maximum specific activity \left(a_D\right)_{max} at the point of ideal equilibrium between y_P\ and\ y_D which occurs at \left[\left(x_D\right)_{max},\left(y_D\right)_{max}\right], as shown in (T12.29 through (T12.32)), while \lim _{x \rightarrow \infty}\left(a_{\mathrm{D}}\right)_{\max }=0.
The maximum specific activity \left(a_D\right)_{max} calculated for the depletion model is from (12.139) now written as follows
\left(a_{\mathrm{D}}\right)_{\max }=\frac{\sigma_{\mathrm{P}} \dot{\varphi} N_{\mathrm{A}}\left(y_{\mathrm{D}}\right)_{\max }}{A_{\mathrm{P}}}=\frac{\sigma_{\mathrm{P}} N_{\mathrm{A}}}{A_{\mathrm{P}}} \dot{\varphi} e^{\frac{m}{1-m} \ln m}=\frac{\sigma_{\mathrm{P}} N_{\mathrm{A}}}{A_{\mathrm{P}}} \dot{\varphi} \exp \left\{-\frac{\frac{\sigma_{\mathrm{P}} \dot{\varphi}}{\lambda_{\mathrm{D}}}}{\frac{\sigma_{\mathrm{P}} \dot{\varphi}}{\lambda_{\mathrm{D}}}-1} \ln \frac{\sigma_{\mathrm{P}} \dot{\varphi}}{\lambda_{\mathrm{D}}}\right\} (12.140)
where we used the definition of m=\sigma_{\mathrm{P}} \dot{\varphi} / \lambda_{\mathrm{D}} \text { and the expression for }\left(y_{\mathrm{D}}\right)_{\max } derived in (12.131) of Prob. 255.
(b) Specific activity a_D of daughter radionuclide D produced in nuclear activation of parent nuclide P depends on various activation parameters, such as: activation cross section σ_P of the parent P nucleus, decay constant λ_D of the daughter D nucleus, activation particle fluence rate \dot{φ}, and activation time t. For a given parent– daughter nuclear configuration, σ_P\ and\ λ_D are fixed, so that the specific activity a_D depends on \dot{φ} and t, as shown for the saturation model in (12.136) and for the depletion model in (12.139). However, as shown in Prob. 258, the maximum attainable specific activity \left(a_D\right)_{max} is limited by the theoretical specific activity \left(a_D\right)_{theor} given in (12.134) which defines the upper limit of achievable specific activities in nuclear activation for a given parent–daughter configuration.
Theoretical specific activities \left(a_D\right)_{theor} of various radionuclides of importance in medical physics (Co-60, Mo-99, Eu-152, Ir-192, and Au-198) are calculated with (12.134) as follows (thermal neutron cross sections σ_D are from the IAEA TRS Report #156)
(1) Cobalt-60: \left(t_{1 / 2}\right)_{\mathrm{Co}-60}=5.26 \mathrm{a}, A_{\mathrm{Co}-60}=59.93 \mathrm{~g} / \mathrm{mol}
Parent nucleus: cobalt-59, \sigma_{\mathrm{Co}-59}=37.2 \mathrm{~b}.
(2) \text { Molybdenum-99: }\left(t_{1 / 2}\right)_{\mathrm{Mo}-99}=65.94 \mathrm{~h}, A_{\mathrm{Mo}-99}=98.91 \mathrm{~g} / \mathrm{mol}
Parent nucleus: molybdenum-98, \sigma_{\mathrm{Mo}-98}=0.13 b
(3) \text { Europium-152: }\left(t_{1 / 2}\right)_{\mathrm{Eu}-152}=13.54 \mathrm{a}, A_{\mathrm{Eu}-152}=151.92 \mathrm{~g} / \mathrm{mol}
Parent nucleus: europium-151, \sigma_{\mathrm{Eu}-151}=5300 b
(4) \text { Iridium-192: }\left(t_{1 / 2}\right)_{\mathrm{Ir}-192}=73.8 \mathrm{~d}, A_{\mathrm{Mo}-99}=98.91 \mathrm{~g} / \mathrm{mol}
Parent nucleus: iridium-191, \sigma_{\mathrm{Ir}-191}=954 b
(5) \text { Gold-198: }\left(t_{1 / 2}\right)_{\mathrm{Au}-198}=64.68 \mathrm{~h}, A_{\mathrm{Au}-198}=197.97 \mathrm{~g} / \mathrm{mol}
Parent nucleus: gold-197, \sigma_{\mathrm{Au}-197}=98.8 b
(c) Maximum specific activities \left(a_D\right)_{max} of radionuclide D attainable in nuclear activation were derived in (a) and are given in (12.137) and (12.140) for the saturation model and the depletion model, respectively. We will now use these two expressions to determine \left(a_D\right)_{max} of (1) Co-60, (2) Mo-99, (3) Eu-152, (4) Ir-192, and (5) Au-198 for four neutron fluence rates: 5 \times 10^{11} \mathrm{~cm}^{-2} \cdot \mathrm{s}^{-1}, 2 \times 10^{13} \mathrm{~cm}^{-2} \cdot \mathrm{s}^{-1}, 3 \times 10^{14} \mathrm{~cm}^{-2} \cdot \mathrm{s}^{-1} \text {, and } 1.2 \times 10^{16} \mathrm{~cm}^{-2} \cdot \mathrm{s}^{-1}. Before embarking on calculation of \left(a_D\right)_{max}, we summarize in Table 12.5 the relevant physical data, obtained from Appendix A or from the literature for the five radionuclides. Entries for \left(a_D\right)_{theor} were determined in (b) with (12.134). In Table 12.6 we list activation factors m for the five radionuclides and four thermal neutron fluence \dot{φ} rates. It is evident that the range in \dot{φ} in nature is quite large in our example extending from about ∼2\times 10^{−8}\ to\ ∼4\times 10^4. Entries for \left(a_D\right)_{theor} were calculated in (b) with (12.134).
Results of \left(a_D\right)_{max} calculations are summarized for radionuclides cobalt-60, molybdenum-99, europium-152, iridium-192, and gold-198 in Table 12.7 for the saturation model determined with (12.137) and in Table 12.8 for the depletion model determined with (12.140). For a given radionuclide the maximum specific activity \left(a_D\right)_{max} in Table 12.7 is linearly proportional with \dot{φ} in the whole fluence rate range, while in Table 12.8 the maximum specific activity \left(a_D\right)_{max} is proportional to \dot{φ} at low \dot{φ} and saturates at \left(a_D\right)_{theor} at high \dot{φ}. Results displayed in Tables 12.7 and 12.8 are plotted in Fig. 12.4, for the saturation model with light solid lines and for the depletion model with heavy solid curves.
The practical range of thermal neutron fluence \dot{φ} in nuclear reactors ranges from \sim 10^{11} \mathrm{~cm}^{-2} \cdot \mathrm{s}^{-1} \text { to } \sim 10^{16} \mathrm{~cm}^{-2} \cdot \mathrm{s}^{-1}. The range covered in Fig. 12.4 is an expanded practical range to illustrate the behavior of \left(a_D\right)_{max} that would be observed with saturation and depletion models if the practical fluence rate range were expanded to \sim 10^{22} \mathrm{~cm}^{-2} \cdot \mathrm{s}^{-1}. It is obvious that in the practical range of \dot{φ} activation of Mo-99 and to a large extent also of Au-198 can be adequately described by the saturation model of nuclear activation. Ir-192 and Co-60 follow the saturation model for \dot{φ} < ∼ 10^{13}\ cm^{−2}\ ·\ s^{−1} but above 10^{13}\ cm^{−2}\ ·\ s^{−1} should be described with the depletion model. Eu-152 for all practical fluence rates \dot{φ} should be described with the depletion model.
(d) Activation time \left(t_{max}\right)_D required to attain the maximum specific activity \left(a_D\right)_{max} of daughter D radionuclide at a given neutron fluence rate \dot{φ} is determined from the expression for \left(x_D\right)_{max} which gives the normalized time coordinate of the point of ideal parent-daughter equilibrium, derived in (12.88) of Prob. 253 and in (T12.29). The following relationship holds for \left(x_D\right)_{max}\ and\ \left(t_{max}\right)_D.
\left(x_{\mathrm{D}}\right)_{\max }=\frac{m}{m-1} \frac{\ln m}{\ln 2}=\frac{m \lambda_{\mathrm{D}}\left(t_{\max }\right)_{\mathrm{D}}}{\ln 2} \quad \text { or } \quad\left(t_{\max }\right)_{\mathrm{D}}=\frac{\left(x_{\mathrm{D}}\right)_{\max } \ln 2}{m \lambda_{\mathrm{D}}}=\frac{\ln m}{(m-1) \lambda_{\mathrm{D}}} \text {, } (12.146)
where m is the activation factor defined as m=\sigma_{\mathrm{P}} \dot{\varphi} / \lambda_{\mathrm{D}}, \sigma_{\mathrm{P}} is the activation cross section of the parent nuclide, and λ_D is the decay constant of the daughter radionuclide. Results of \left(t_{max}\right)_D calculation using (12.146) are summarized in Table 12.9 and show that, for a given daughter radionuclide D, (t_{max})_D is roughly inversely proportional to the particle fluence rate \dot{φ}. Thus, the higher is the thermal neutron fluence \dot{φ}, the shorter is the activation time \left(t_{max}\right)_D required to attain the maximum specific activity \left(a_D\right)_{max} for a given daughter D radionuclide.
Table 12.5 Parameters relevant in calculation of maximum attainable specific activity (a_D)_{\max } of Co-60, Mo-99, Eu- 152 , Ir-192, and Au-198 in activation with thermal neutrons
\begin{array}{llllll} \hline Daughter D & Co-60 & Mo-99 & Eu-152 & Ir-192 & Au-198 \\ \hline Atomic number & 27 & 42 & 63 & 77 & 97 \\ \hline A_{\mathrm{D}}(\mathrm{g} / \mathrm{mol}) & 59.93 & 98.91 & 151.92 & 191.96 & 197.97 \\ \hline \left(t_{1 / 2}\right)_{\mathrm{D}} & 5.26 \mathrm{a} & 65.94 \mathrm{~h} & 13.54 \mathrm{a} & 73.8 \mathrm{~d} & 64.48 \mathrm{~h} \\ \hline \lambda_{\mathrm{D}}\left(\mathrm{s}^{-1}\right) & 4.179 \times 10^{-9} & 2.920 \times 10^{-6 } & 1.623 \times 10^{-9} & 1.087 \times 10^{-7} & 2.986 \times 10^{-6} \\ \hline Parent P & Co-59 & Mo-98 & Eu-151 & Ir-191 & Au-197 \\ \hline Nuclear reaction & { }_{27}^{59} \mathrm{Co}(\mathrm{n}, \gamma){ }_{27}^{60} \mathrm{Co} & { }_{42}^{98} \mathrm{Mo}(\mathrm{n}, \gamma){ }_{42}^{99} \mathrm{Mo} & { }_{63}^{151} \mathrm{Eu}(\mathrm{n}, \gamma){ }_{63}^{152} \mathrm{Eu} & { }_{77}^{191} \operatorname{Ir}(\mathrm{n}, \gamma){ }_{77}^{192} \mathrm{Ir} & { }_{79}^{197} \mathrm{Au}(\mathrm{n}, \gamma){ }_{79}^{198} \mathrm{Au} \\ \hline A_{\mathrm{P}}(\mathrm{g} / \mathrm{mol}) & 58.93 & 97.91 & 150.92 & 190.96 & 196.97 \\ \hline \sigma_{\mathrm{P}}(\mathrm{b}) & 37.2 & 0.13 & 5300 & 954 & 98.8 \\ \hline \sigma_{\mathrm{P}} / \lambda_{\mathrm{D}}\left(\mathrm{cm}^2 \cdot \mathrm{s}\right) & 8.902 \times 10^{-15} & 4.452 \times 10^{-20} & 3.266 \times 10^{-12} & 8.776 \times 10^{-15} & 3.309 \times 10^{-17} \\ \hline \left(a_{\mathrm{D}}\right)_{\text {theor }}(\mathrm{Ci} / \mathrm{g}) & 1.135 \times 10^3 & 4.805 \times 10^5 & 1.739 \times 10^2 & 9.217 \times 10^3 & 2.447 \times 10^5 \\ \hline \lambda_{\mathrm{D}} / A_{\mathrm{D}}\left(\frac{\mathrm{mol}}{s · g}\right) & 6.973 \times 10^{-11} & 2.952 \times 10^{-8} & 1.068 \times 10^{-11} & 5.663 \times 10^{-10} & 1.508 \times 10^{-8} \\ \hline \end{array}Table 12.6 Activation factor m = σ_P\dot{φ}/λ _D for various radionuclides of interest in medical physics and for four thermal neutron fluence rates \dot{φ} : 5\times 10^{11}\ cm^{−2}\ ·\ s^{−1},\ 2\times 10^{13}\ cm^{−2}\ ·\ s^{−1},\ 3\times 10^{14}\ cm^{−2}\ ·\ s^{−1},\ and\ 1.2\times 10^{16}\ cm^{−2} ·s^{−1}.
\begin{array}{llllll} \hline \text { Radionuclide } & \sigma_{\mathrm{P}} / \lambda_{\mathrm{D}}\left(\mathrm{cm}^2 \cdot \mathrm{s}\right) &{\text { Activation factor } m=\sigma_{\mathrm{P}} \dot{\varphi} / \lambda_{\mathrm{D}}} \\ & & {\text { Thermal neutron fluence rate } \dot{\varphi}\left(\mathrm{cm}^{-2} \cdot \mathrm{s}^{-1}\right)}\\ \hline \end{array} \\ \begin{array}{llllll} & & 5 \times 10^{11} & 2 \times 10^{13} & 3 \times 10^{14} & 1.2 \times 10^{16} \\ \hline \text { Cobalt-60 } & 8.902 \times 10^{-15} & 4.5 \times 10^{-3} & 0.18 & 2.7 & 1.1 \times 10^2 \\ \hline \text { Molybdenum-99 } & 4.452 \times 10^{-20} & 2.2 \times 10^{-8} & 8.9 \times 10^{-7} & 1.3 \times 10^{-5} & 5.3 \times 10^{-4} \\ \hline \text { Europium-152 } & 3.266 \times 10^{-12} & 1.7 & 65 & 9.8 \times 10^2 & 3.9 \times 10^4 \\ \hline \text { Iridium-192 } & 8.776 \times 10^{-15} & 4.4 \times 10^{-3} & 0.18 & 2.6 & 1.1 \times 10^2 \\ \hline \text { Gold-198 } & 3.309 \times 10^{-17} & 3.3 \times 10^{-5} & 6.6 \times 10^{-4} & 9.9 \times 10^{-3} & 0.4 \\ \hline \end{array}
Table 12.7 Maximum attainable specific activities \left(a_D\right)_{max} in nuclear activation for five neutron activation reactions of importance in medical physics and for four neutron fluence rates \dot{φ} according to the saturation model of neutron activation given in (12.137). Specific activities are given in Ci/g
\begin{array}{lllll} \hline \dot{\varphi}\left(\mathrm{cm}^{-2} \cdot \mathrm{s}^{-1}\right) & 5 \times 10^{11} & 2 \times 10^{13} & 3 \times 10^{14} & 1.2 \times 10^{16} \\ \hline \text { Cobalt-60 } & 5.14 & 2.06 \times 10^2 & 3.08 \times 10^3 & 1.23 \times 10^5 \\ \text { Molybdenum-99 } & 1.08 \times 10^{-2} & 4.32 \times 10^{-1} & 6.48 & 2.59 \times 10^2 \\ \text { Europium-152 } & 2.86 \times 10^2 & 1.14 \times 10^4 & 1.72 \times 10^5 & 6.86 \times 10^6 \\ \text { Iridium-192 } & 4.07 \times 10 & 1.63 \times 10^3 & 2.44 \times 10^4 & 9.76 \times 10^5 \\ \text { Gold-198 } & 4.08 & 1.63 \times 10^2 & 2.45 \times 10^3 & 9.80 \times 10^4 \\ \hline \end{array}Table 12.8 Maximum attainable specific activities \left(a_D\right)_{max} in nuclear activation for five neutron activation reactions of importance in medical physics and for four neutron fluence rates \dot{φ} according to the depletion model of neutron activation given in (12.140). Specific activities are given in Ci/g
\begin{array}{lllll} \hline \dot{\varphi}\left(\mathrm{cm}^{-2} \cdot \mathrm{s}^{-1}\right) & 5 \times 10^{11} & 2 \times 10^{13} & 3 \times 10^{14} & 1.2 \times 10^{16} \\ \hline \text { Cobalt-60 } & 5.01 & 1.41 \times 10^2 & 6.41 \times 10^2 & 1.10 \times 10^3 \\ \hline \text { Molybdenum-99 } & 1.08 \times 10^{-2} & 4.32 \times 10^{-1} & 6.48 & 2.58 \times 10^2 \\ \hline \text { Europium-152 } & 8.07 \times 10 & 1.64 \times 10^2 & 1.74 \times 10^2 & 1.75 \times 10^2 \\ \hline \text { Iridium-192 } & 3.97 \times 10 & 1.12 \times 10^3 & 5.12 \times 10^3 & 8.86 \times 10^3 \\ \hline \text { Gold-198 } & 4.08 & 1.63 \times 10^3 & 2.34 \times 10^3 & 5.33 \times 10^4 \\ \hline \end{array}
Table 12.9 Activation time (t_{max})_D required to attain the maximum specific activity (a_D)_{max} of daughter D radionuclide at a given neutron fluence rate \dot \varphi according to the depletion model of nuclear activation for five radionuclides of interest to medical physics. Data were calculated with (12.146) for photon fluence rates \dot \varphi of 5×10^{11} cm^{−2} · s^{−1}, 2×10^{13} cm^{−2} · s^{−1}, 3×10^{14} cm^{−2} · s^{−1}, and 1.2×10^{16} cm^{−2} · s^{−1}
\begin{array}{llllll} \hline \text{Radionuclide} & (t_{1/2})_D & \text{Thermal neutron fluence rate } \dot \varphi (cm^{−2} · s^{−1}) \\ \hline \end{array} \\ \begin{array}{llllll} & & 5×10^{11} & 2×10^{13} & 3×10^{14} & 1.2×10^{16} \\ \hline Cobalt-60 & 5.26 a&41.3 a&15.9 a&4.46 a& 0.34 a\\ \hline Molybdenum-99 & 65.9 h&69.8 h&55.2 h&44.5 h&29.9 h \\ \hline Europium-152 & 13.53 a&15.1 a&1.27 a&0.14 a&0.005 a \\ \hline Iridium-192 & 73.8 d&580.6 d&224.7 d&63.1 d& 4.8 d\\ \hline Gold-198 & 64.5 h &42.7 d&28.4 d&18.1 d& 5.9 d\\\hline \end{array}