Specific ionization j is defined as the number of primary and secondary ion pairs produced per unit length of the path traced by a charged particle (CP) traversing an absorber. It is usually expressed in ion pairs per millimeter (ip/mm) and increases with the charge of the CP. The specific ionization produced in the absorber by a CP at a given kinetic energy E_K is proportional to the linear stopping power s of the absorber and the proportionality constant (at least for gases) is \bar{W}, the mean energy required to produce an ion pair in the absorber at particle energy E_K. For gases \bar{W} is essentially independent of particle energy and only slightly depends on the CP type. For example, \bar{W} of air is \bar{W}_{air} = 33.97 eV/ip for electrons and x rays, 35 eV/ip for protons, and 36 eV/ip for α particles.
(a) Determine the specific ionization j resulting from the passage of a 10 MeV proton through standard air (T = 0 °C and p = 101.3 kPa). Density of standard air ρ_{\text{air}} = 1.293\times 10^{−3} g/cm³; the mean ionization/excitation potential of air is I_{air} = 86 eV. Ignore the Fano shell and density corrections in the calculation of collision stopping powers.
(b) Based on Fig. 6.7 that shows the mass collision stopping power S_{col} of standard air against proton kinetic energy E_K in the kinetic energy range from 10^{−3}\ MeV\ to\ 10^4 MeV, determine the maximum possible specific ionization j in standard air for protons. Stopping power data are from the NIST at http://physics.nist.gov/cgi-bin/Star/ap_table.pl.
(c) Based on data from the NIST, given in Table 6.9A, prepare a plot of specific ionization j against residual range R_{residual} for a 10 MeV proton in standard air. In order to get a clear picture of the Bragg peak plot j only for the last 5 mm of the proton path in air.
Table 6.9A Mass collision stopping power S_{col} and CSDA range R_{CSDA} for protons in air in the kinetic energy E_K range from 0 to 10 MeV. The table is to be used to determine a plot of specific ionization against residual range for 10 MeV protons in standard air where E_K is kinetic energy of the proton propagating in standard air, S_{col} is mass collision stopping power of standard air, s_{col} is linear collision stopping power of standard air, j is specific ionization produced in standard air by protons of energy E_K,\ R_{CSDA} is the continuous slowing down approximation (CSDA) range in g/cm² for protons of energy E_{K} in standard air, r_{CSDA} is the CSDA range in mm of air for protons of energy E_K.
\begin{array}{|c|c|c|c|c|c|c|} \hline 1 & \begin{array}{l} E_{\mathrm{K}} \\ (\mathrm{MeV}) \end{array} & \begin{array}{l} S_{\mathrm{col}^{\mathrm{a}}} \\ \left(\mathrm{MeV} \cdot \mathrm{cm}^2 / \mathrm{g}\right) \end{array} & \begin{array}{l} s_{\text {col }} \\ (\mathrm{MeV} / \mathrm{cm}) \end{array} & \begin{array}{l} j \\ \text { (i.p./mm) } \end{array} & \begin{array}{l} R_{\mathrm{CSDA}}{ }^{\mathrm{a}} \\ \left(\mathrm{g} / \mathrm{cm}^2\right) \end{array} & \begin{array}{l} R_{\text {residual }} \\ (\mathrm{mm}) \end{array} \\ \hline 2 & 0.001 & 141.4 & & & 9.857 \times 10^{-6} & \\ \hline 3 & 0.005 & 277.6 & & & 2.891 \times 10^{-5} & \\ \hline 4 & 0.01 & 385.0 & & & 4.400 \times 10^{-5} & \\ \hline 5 & 0.05 & 689.7 & & & 1.152 \times 10^{-4} & \\ \hline 6 & 0.07 & 729.3 & & & 1.433 \times 10^{-4} & \\ \hline 7 & 0.08 & 735.5 & & & 1.569 \times 10^{-4} & \\ \hline 8 & 0.09 & 735.2 & & & 1.705 \times 10^{-4} & \\ \hline 9 & 0.2 & 592.8 & & & 3.349 \times 10^{-4} & \\ \hline 10 & 0.5 & 350.1 & & & 1.021 \times 10^{-3} & \\ \hline 11 & 1 & 222.9 & & & 2.867 \times 10^{-3} & \\ \hline 12 & 2 & 137.1 & & & 8.792 \times 10^{-3} & \\ \hline 13 & 5 & 69.1 & & & 4.173 \times 10^{-2} & \\ \hline 14 & 10 & 40.1 & & & 1.408 \times 10^{-1} & \\ \hline \end{array}
^aData are from the NIST at http://physics.nist.gov/cgi-bin/Star/ap_table.pl
(a) Mean specific ionization j of air for 10 MeV proton is determined using the following steps:
(1) Use the Bethe equation (6.17) for heavy CP to determine mass collision stopping power S of air for 10 MeV proton as follows
S_{\mathrm{col}}=C_1 \frac{N_{\mathrm{e}} z^2}{\beta^2} B_{\mathrm{col}}, (6.59)
= C_1\frac{N_ez^2}{β^2}\bar {B}_{col}. (6.17)
with parameters defined in Prob. 131.
(2) Determine the electron density N_e of air for use in (6.59).
(3) Determine β² for 10 MeV proton for use in (6.59).
(4) Calculate the atomic stopping number B_{col} defined in (6.19) for use in (6.59).
\bar{B}_{\text{col}} =\left\{\ln\frac{2m_ec^2}{I}+ \ln\frac{β^2}{1 − β^2}− β^2 − \frac{C}{Z}−δ\right\}. (6.19)
(5) Multiply S_{col} of (6.59) by density of standard air \left(ρ_{\text{air}} = 1.293\times 10^{−3}\ g/cm^3 \right) to get the linear collision stopping power s_{col}.
(6) Multiply s_{col}\ by\ \bar{W}_{air}, the mean energy required to produce an ion pair in air by a proton, to get the mean specific ionization j of air for a 10 MeV proton.
(1) Before we embark on calculation of the mass collision stopping power S_{col} we must determine the parameters of (6.59).
(2) Electron density N_e of air is calculated using the following composition of air per weight and molecular mass (see Table T8.2): nitrogen N: 75.8 %, M_N = 14.0067; oxygen O: 22.6 %, M_O = 15.9994; argon Ar: 0.93 %, M_{Ar} = 39.948; and carbon dioxide CO_2: 0.03 %, M_{CO2} = 44.
In one gram of air we thus have the following four constituents of importance:
(0.758 g) of N + (0.226 g) of O + (0.0093 g) of Ar + (0.0003 g) of CO_2 and each one of the four components contributes the following number of electrons:
Nitrogen:
Oxygen:
\begin{aligned} x_{\mathrm{O}} & =\frac{\left(6.022 \times 10^{23} \mathrm{at} / \mathrm{mol}\right) \times(0.226 \mathrm{~g})}{15.9994 \mathrm{~g} / \mathrm{mol}} \times(8 \mathrm{el} / \mathrm{at}) \\ & =6.80512 \times 10^{22} \mathrm{el}\quad (6.61) \end{aligned}Argon:
\begin{aligned} x_{\mathrm{N}} & =\frac{\left(6.022 \times 10^{23} \mathrm{at} / \mathrm{mol}\right) \times(0.0093 \mathrm{~g})}{39.948 \mathrm{~g} / \mathrm{mol}} \times(18 \mathrm{el} / \mathrm{at}) \\ & =2.524 \times 10^{21} \mathrm{el}\quad (6.62) \end{aligned}Carbon dioxide:
\begin{aligned} x_{\mathrm{N}} & =\frac{\left(6.022 \times 10^{23} \mathrm{at} / \mathrm{mol}\right) \times(0.0003 \mathrm{~g})}{44 \mathrm{~g} / \mathrm{mol}} \times(28 \mathrm{el} / \mathrm{at}) \\ & =1.150 \times 10^{20} \mathrm{el}\quad (6.63) \end{aligned}Electron density N_e of air is given by the sum of the components listed in (6.60) through (6.63) to yield N_e = 2.99\times 10^{23} electron/g.
(3) Velocity β of a 10 MeV proton is determined using the standard relationship (see T2.7)
\beta^2=\frac{v^2}{c^2}=1-\frac{1}{\left(1+\frac{E_{\mathrm{K}}}{m_{\mathrm{p}} c^2}\right)^2}=1-\frac{1}{\left(1+\frac{10}{938.3}\right)^2}=0.021 (6.64)
(4) Atomic stopping number B_{col} is calculated as follows
Finally, the mass collision stopping power S_{col} of air for a 10 MeV proton is
in excellent agreement with the value of 40.1 MeV · cm²/g that the NIST provides for dry air near sea level and 10 MeV proton at http://physics.nist.gov/cgi-bin/Star/ ap_table.pl.
(5) Linear collision stopping power s_{col} is calculated by multiplying the mass collision stopping power S_{col} by density ρ
s_{\mathrm{col}}=\rho S_{\mathrm{col}}=\left(1.293 \times 10^{-3} \mathrm{~g} / \mathrm{cm}^3\right) \times\left(40.1 \mathrm{MeV} \cdot \mathrm{cm}^2 / \mathrm{g}\right)=0.0518 \mathrm{MeV} / \mathrm{cm} (6.67)
Since \bar{W}_{air} is 35 eV for protons in air, we get the following result for the mean specific ionization j of air for 10 MeV proton
j=\frac{s_{\text {col }}}{\bar{W}_{\text {air }}}=\frac{0.0518 \times 10^6 \mathrm{eV} / \mathrm{cm}}{35 \mathrm{eV} / \mathrm{ip}}=1480 \mathrm{ip} / \mathrm{cm}=148 \mathrm{ip} / \mathrm{mm} . (6.68)
(b) As is evident from Fig. 6.7 (see point B), the maximum possible specific ionization j_{max} in air is produced when S_{col} against proton kinetic energy E_K is at its maximum and, for proton in standard air, this maximum occurs at E_K = 0.084 MeV and amounts to S_{\mathrm{col}}^{\max }=736 \mathrm{MeV} \cdot \mathrm{cm}^2 / \mathrm{g}.
Based on the discussion in (a), we now calculate j_{max} as follows
in excellent agreement with the value of j_{max} = 2750 ip/mm stated by Evans (p. 656).
(c) To plot the specific ionization j against the residual range R_{residual} we first complete Table 6.9A which provides the NIST data on S_{col} and RCSDA for protons (0.001 MeV to 10 MeV) in air.
Results of our calculation of j and R_{residual} are displayed in Table 6.9B. In Fig. 6.8 we plot the specific ionization j of Table 6.9B against residual range R_{residual} for the last 5 mm of the 10 MeV proton in air where the proton energy is already significantly diminished, rapidly approaches 0 and the ionization reaches its maximum value at the Bragg peak. Note that j_{max} occurs around the residual range of 1.2 mm where the proton energy falls to E_K = 0.084 MeV.
Table 6.9B Various physical parameters of 10 MeV proton traversing standard air
\begin{array}{lllllll} \hline 1 & \begin{array}{l} E_{\mathrm{K}} \\ (\mathrm{MeV}) \end{array} & \begin{array}{l} S_{\text {col }}(\mathrm{NIST}) \\ \left(\mathrm{MeV} \cdot \mathrm{cm}^2 / \mathrm{g}\right) \end{array} & \begin{array}{l} s_{\text {col }}(6.67) \\ (\mathrm{MeV} / \mathrm{cm}) \end{array} & \begin{array}{l} j(6.68) \\ (\mathrm{i} . \mathrm{p} . / \mathrm{mm}) \end{array} & \begin{array}{l} R_{\mathrm{CSDA}} \text { (NIST) } \\ \left(\mathrm{g} / \mathrm{cm}^2\right) \end{array} & \begin{array}{l} R_{\text {residual }} \\ (\mathrm{mm}) \end{array} \\ \hline 2 & 0.001 & 141.4 & 0.148 & 442.2 & 9.857 \times 10^{-6} & 0.08 \\ \hline 3 & 0.005 & 277.6 & 0.332 & 989.3 & 2.891 \times 10^{-5} & 0.22 \\ \hline 4 & 0.01 & 385.0 & 0.469 & 1,399.0 & 4.400 \times 10^{-5} & 0.34 \\ \hline 5 & 0.05 & 689.7 & 0.852 & 2,540.6 & 1.152 \times 10^{-4} & 0.90 \\ \hline 6 & 0.07 & 729.3 & 0.902 & 2,688.7 & 1.433 \times 10^{-4} & 1.1 \\ \hline 7 & 0.08 & 735.5 & 0.910 & 2,712.0 & 1.569 \times 10^{-4} & 1.2 \\ \hline 8 & 0.09 & 735.2 & 0.909 & 2,711.6 & 1.705 \times 10^{-4} & 1.3 \\ \hline 9 & 0.2 & 592.8 & 0.734 & 2,187.8 & 3.349 \times 10^{-4} & 2.6 \\ \hline 10 & 0.5 & 350.1 & 0.433 & 1,292.3 & 1.021 \times 10^{-3} & 7.9 \\ \hline 11 & 1 & 222.9 & 0.276 & 822.7 & 2.867 \times 10^{-3} & 22.2 \\ \hline 12 & 2 & 137.1 & 0.170 & 506.1 & 8.792 \times 10^{-3} & 68 \\ \hline 13 & 5 & 69.1 & 0.086 & 255.1 & 4.173 \times 10^{-2} & 323 \\ \hline 14 & 10 & 40.1 & 0.050 & 147.9 & 1.408 \times 10^{-1} & 1089 \\ \hline \end{array}